Research progress on the energy consumption of bionic flapping-wing aerial vehicles
-
摘要: 自然界中飛行生物利用肌肉、骨骼等結構的協同作用實現靈活、敏捷的飛行,具有撲動、懸停、滑翔等多種飛行模式。仿生撲翼飛行器是模擬鳥類和昆蟲等飛行模式的一類飛行器,通過機翼的周期性上下撲動產生飛行所需的升力和推力,具有隱蔽性好、能效高和飛行噪聲小等優點,得到了各研究機構的廣泛關注。由于撲翼飛行器自身的負載能力較小,很難攜帶大容量的電池,導致其續航時間有限。研究新型輕質高能量密度的電池和高仿生設計實現續航時間的提升,是撲翼飛行器重要的研究方向。但是,針對撲翼飛行器新型電池的研究還處于初級研發階段,尚不具備機載飛行測試的能力。研究人員從仿生機理分析、機構優化設計以及控制策略研究等方面入手,針對撲翼飛行器能耗問題開展了大量研究,并取得了階段性成果。總結了有關仿生撲翼飛行器能耗方面的研究進展,分析了靜態參數、動態參數和控制策略等對仿生撲翼飛行器能耗的影響,提出了降低能耗的措施,并對未來研究方向做出了展望。Abstract: Natural flyers use muscles, bones, and other structures in coordination to attain agile and nimble flight performance. They can fly in various complex environments through different flight modes, such as flapping, hovering, and gliding. The high-lift mechanism on flapping-wing flights plays a fundamental role in bionic flapping-wing aerial vehicle design. Bionic flapping-wing aerial vehicles operate in modes that mimic birds and insects. They rely on flapping wings to generate the lift and thrust required for flight. With the advantages of good concealment, high energy efficiency, and low flying noise, flapping-wing aerial vehicles have great potential in performing civil and military tasks. In the civil field, they can go deep into different complicated, unknown environments and perform environmental monitoring, rescue missions, and other special tasks that are difficult for human beings to complete. In the military field, they can replace human beings to complete covert reconnaissance and search tasks and play an important role in maintaining regional stability and preventing military invasions. Because of their broad application prospects, flapping-wing aerial vehicles have drawn considerable attention from researchers. Inspiration from the distinct features of natural flyers has influenced flapping-wing aerial vehicle design. Many attempts have been made to improve flapping-wing aerial vehicle performance. Because flapping-wing aerial vehicles have a small payload, they carry large-capacity batteries with difficulty, resulting in limited endurance. Under limited energy, the endurance time of flapping-wing aerial vehicles can be effectively increased by reducing energy consumption. An important research direction of flapping-wing aerial vehicles is to improve endurance by developing high energy density batteries and bionic design. Starting from bionic mechanism analysis, mechanism optimization design, and control strategy research, designers and engineers have conducted much research on the energy consumption of flapping-wing aerial vehicles, and achievements have been made frequently. However, their flight efficiency is still far from their natural counterparts. Many challenges remain in the bionic mechanism, fabrication, and autonomous flight of flapping-wing aerial vehicles. This paper summarizes the research progress on the energy consumption of bionic flapping-wing aerial vehicles. We discuss the main components of flapping-wing aerial vehicle energy consumption. Then, we analyze the effects of static parameters, dynamic parameters, and control strategies on the energy consumption of flapping-wing aerial vehicles. The energy consumption improvements of flapping-wing aerial vehicles with different parameter designs are compared. Finally, we propose measures to reduce energy consumption and discuss future research directions.
-
Key words:
- flapping-wing aerial vehicle /
- natural flyer /
- flight mode /
- energy consumption /
- bionic design
-
圖 8 帶柔性儲能元件的驅動機構[67-68]. (a) 哈佛大學微型撲翼飛行器; (b) 四連桿傳動機構; (c) 南洋理工大學的微型撲翼飛行器; (d) 聚酰亞胺薄膜鉸鏈彈性勢能存儲元件
Figure 8. Drive mechanism with flexible energy storage element[67-68]: (a) flapping-wing micro air vehicle of Harvard University; (b) transmission forming a four-bar; (c) flapping-wing micro air vehicle of Nanyang Technological University; (d) polyimide film hinges for elastic energy storage
www.77susu.com -
參考文獻
[1] Ramasamy M, Lee T E, Leishman J G. Flow field of a rotating-wing micro air vehicle. J Aircr, 2007, 44(4): 1236 doi: 10.2514/1.26415 [2] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685 doi: 10.16383/j.aas.2017.c160581賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685 doi: 10.16383/j.aas.2017.c160581 [3] Ma K Y, Chirarattananon P, Fuller S B, et al. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013, 340(6132): 603 doi: 10.1126/science.1231806 [4] Graule M A, Chirarattananon P, Fuller S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science, 2016, 352(6288): 978 doi: 10.1126/science.aaf1092 [5] Chen Y F, Wang H Q, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2017, 2(11): eaao5619 doi: 10.1126/scirobotics.aao5619 [6] Jafferis N T, Helbling E F, Karpelson M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 2019, 570(7762): 491 doi: 10.1038/s41586-019-1322-0 [7] De Croon G C, De Clercq K M, Ruijsink R, et al. Design, aerodynamics, and vision-based control of the DelFly. Int J Micro Air Veh, 2009, 1(2): 71 doi: 10.1260/175682909789498288 [8] Scheper K Y W, Karásek M, Wagter C D, et al. First autonomous multi-room exploration with an insect-inspired flapping wing vehicle // 2018 IEEE International Conference on Robotics and Automation. Brisbane, 2018: 5546 [9] Karásek M, Muijres F T, De Wagter C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361(6407): 1089 doi: 10.1126/science.aat0350 [10] Phan H V, Kang T, Park H C. Design and stable flight of a 21g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspir Biomim, 2017, 12(3): 036006 doi: 10.1088/1748-3190/aa65db [11] Phan H V, Aurecianus S, Kang T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int J Micro Air Veh, 2019, 11: 1756829319861371 [12] Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370(6521): 1214 doi: 10.1126/science.abd3285 [13] Jackowski Z J. Design and Construction of an Autonomous Ornithopter [Dissertation]. Cambridge: Massachusetts Institute of Technology, 2009 [14] Zufferey R, Tormo-Barbero J, Guzmán M M, et al. Design of the high-payload flapping wing robot E-flap. IEEE Robotics Autom Lett, 2021, 6(2): 3097 doi: 10.1109/LRA.2021.3061373 [15] Send W, Fischer M, Jebens K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics // 28th International Congress of the Aeronautical Sciences. Brisbane, 2012: 1 [16] Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle // 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, 2012: 588 [17] He W, Liu S P, Huang H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot. Control Theory Appl, 2022, 39(1): 12 doi: 10.7641/CTA.2021.00394賀威, 劉上平, 黃海豐, 等. 獨立驅動的仿鳥撲翼飛行機器人的系統設計與實驗. 控制理論與應用, 2022, 39(1):12 doi: 10.7641/CTA.2021.00394 [18] Fu Q, Wang X Q, Zou Y, et al. A miniature video stabilization system for flapping-wing aerial vehicles. Guid Navigat Control, 2022, 2(1): 2250001 doi: 10.1142/S2737480722500017 [19] Huang H F, He W, Wang J B, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ ASME Trans Mech, 2022, http://dx.doi.org/10.1109/TMECH.2022.3182418 [20] He W, Mu X X, Zhang L, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Automatic Sin, 2020, 8(1): 148 [21] Huang H F, He W, Zou Y, et al. System design and control of a butterfly-inspired flapping-wing aerial robot based on wire-driven steering. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.TP.20211117.1454.048.html黃海豐, 賀威, 鄒堯, 等. 基于線驅轉向的仿蝴蝶撲翼飛行機器人系統設計與控制. 控制理論與應用, http://kns.cnki.net/kcms/detail/44.1240.TP.20211117.1454.048.html [22] Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837 [23] Pan E Z, Xu H, Yuan H, et al. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomim Intell Robotics, 2021, 1: 100002 doi: 10.1016/j.birob.2021.100002 [24] Zhang Y X, Wang X J, Wang S P, et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation. J Beijing Univ Aeronaut Astronaut, https://kns.cnki.net/kcms/detail/11.2625.V.20210913.1521.002.html張益鑫, 王興堅, 王少萍, 等. 基于特征運動觀測的蝴蝶前飛規律及樣機驗證. 北京航空航天大學學報,https://kns.cnki.net/kcms/detail/11.2625.V.20210913.1521.002.html [25] Chi P C, Zhang W P, Chen W Y, et al. Design and fabrication of an SU-8 biomimetic flapping-wing micro air vehicle by MEMS technology. Robot, 2011, 33(3): 366 doi: 10.3724/SP.J.1218.2011.00366遲鵬程, 張衛平, 陳文元, 等. 基于MEMS技術的SU-8仿昆蟲微撲翼飛行器設計及制作. 機器人, 2011, 33(3):366 doi: 10.3724/SP.J.1218.2011.00366 [26] Zou Y, Zhang W P, Ke X J, et al. The design and microfabrication of a sub 100 Mg insect-scale flapping-wing robot. Micro Nano Lett, 2017, 12(5): 297 doi: 10.1049/mnl.2016.0687 [27] Fu Q, Zhang X, Zhao M, et al. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle. Chin J Eng, 2022, 44(4): 767付強, 張祥, 趙民, 等. 仿生撲翼飛行器風洞實驗研究進展. 工程科學學報, 2022, 44(4):767 [28] Cai C R. Study on Aerodynamic Performance of Bionic Wing Based on Carrier Pigeon Wing [Dissertation]. Changchun: Jilin University, 2018蔡常睿. 基于信鴿翅膀的仿生機翼氣動性能研究[學位論文]. 長春: 吉林大學, 2018 [29] Liu L. The Design Technologies of Biomimetic Wings for Flapping-Wing MAVs [Dissertation]. Xi’an: Northwestern Polytechnical University, 2007劉嵐. 微型撲翼飛行器的仿生翼設計技術研究[學位論文]. 西安: 西北工業大學, 2007 [30] Wu J C, Popovi Z. Realistic modeling of bird flight animations. Acm Trans Graph, 2003, 22(3): 888 doi: 10.1145/882262.882360 [31] Bajec I L, Heppner F H. Organized flight in birds. Animal Behav, 2009, 78(4): 777 doi: 10.1016/j.anbehav.2009.07.007 [32] Yang Y G, Su H P, Gu X D, et al. Numerical simulation analysis of the effects of flight angle and bend-fold on bird-like flapping-wing air vehicle. J Syst Simul, 2018, 30(5): 1781 doi: 10.16182/j.issn1004731x.joss.201805020楊永剛, 蘇漢平, 顧新冬, 等. 飛行角度及彎曲折疊對仿鳥撲翼飛行器影響分析. 系統仿真學報, 2018, 30(5):1781 doi: 10.16182/j.issn1004731x.joss.201805020 [33] Dickinson M H. Come fly with me. Eng Sci, 2003, 3: 10 [34] Gu W, Robinson O, Rockwell D. Control of vortices on a delta wing by leading-edge injection. AIAA J, 1993, 31(7): 1177 doi: 10.2514/3.11749 [35] Wang Q, Goosen J F L, Van Keulen A. Optimal hovering kinematics with respect to various flapping-wing shapes // IMAV 2013: Proceedings of the International Micro Air Vehicle Conference and Flight Competition. Toulouse, 2013 [36] Yin D F. Design of Robotic Bat Wing and Research on the Force and Power of Bat Wing [Dissertation]. Nanjing: Southeast University, 2016尹東富. 仿蝙蝠機器翅設計與蝙蝠翅膀受力及功耗研究[學位論文]. 南京: 東南大學, 2016 [37] Li M, Liu T, Shi Z, et al. Dense all‐electrochem-active electrodes for all-solid-state lithium batteries. Adv Mater, 2021, 33(26): 2008723 doi: 10.1002/adma.202008723 [38] Zuo W J, Qu Y H, Qi P H, et al. Preparation and performance of 3D-printed positive electrode for lithium-ion battery. Chin J Eng, 2020, 42(3): 358左文婧, 屈銀虎, 祁攀虎, 等. 3D打印鋰離子電池正極的制備及性能. 工程科學學報, 2020, 42(3):358 [39] Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270劉遠峰, 張秀玲, 李從舉. 微生物燃料電池碳基陽極材料的研究進展. 工程科學學報, 2020, 42(3):270 [40] Liu Y, Zhang Y L. Study on aerodynamic characteristics and energy consumption of flapping wing micro air vehicle // 10th National Conference on Fluid Mechanics. Hangzhou, 2018: 247劉懿, 張艷來. 撲翼微型飛行器氣動特性與能耗研究//第十屆全國流體力學學術會議. 杭州, 2018: 247 [41] Wu Y D. Study on Aerodynamic Characteristics and the Design of Wings of Bio-Inspired Flapping Wing Micro Aerial Vehicles [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2020吳應東. 仿生撲翼微型飛行器的機翼設計及其氣動特性研究[學位論文]. 成都: 電子科技大學, 2020 [42] Nguyen T A, Phan H V, Au T K L, et al. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspir Biomim, 2016, 11(4): 046001 doi: 10.1088/1748-3190/11/4/046001 [43] Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees. Proc Bio Sci, 2013, 280(1759): 20130531 [44] Nakata T, Liu H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach. Proc Biol Sci, 2012, 279(1729): 722 [45] Thiria B, Godoy-Diana R. How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(1 Pt 2): 015303 [46] Shang J K, Combes S A, Finio B M, et al. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir Biomim, 2009, 4(3): 036002 doi: 10.1088/1748-3182/4/3/036002 [47] Fang Z F. Design and Experimental Study on Energy Recovery Wings of Flapping-Wing Micro Air Vehicle [Dissertation]. Changchun: Jilin University, 2019房志飛. 微型撲翼飛行器能量回收翅翼的設計與實驗研究[學位論文]. 長春: 吉林大學, 2019 [48] Perez-Rosado A, Bruck H A, Gupta S K. Enhancing the design of solar-powered flapping wing air vehicles using multifunctional structural components // International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston, 2015: 47570 [49] Yang W Q, Song B F, Gao G L, et al. Experimental study on aerodynamic performance of flapping wing with one-way holes/gaps // Asia-Pacific International Symposium on Aerospace Technology. Singapore, 2018: 1160 [50] Fu P, Song B F, Liang S R, et al. An experimental research about the characteristics of thrust and power FWAV. J Northwest Polytech Univ, 2016, 34(6): 976 doi: 10.3969/j.issn.1000-2758.2016.06.008付鵬, 宋筆鋒, 梁少然, 等. 撲翼的推力特性與功率特性的實驗研究. 西北工業大學學報, 2016, 34(6):976 doi: 10.3969/j.issn.1000-2758.2016.06.008 [51] Ke X J, Zhang W P, Cai X F, et al. Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy. Aerosp Sci Technol, 2017, 64: 192 doi: 10.1016/j.ast.2017.01.019 [52] Wang Q, Goosen J F L, Keulen F V. Optimal pitching axis location of flapping wings for efficient hovering flight. Bioinspir Biomim, 2017, 12(5): 056001 doi: 10.1088/1748-3190/aa7795 [53] Shahzad A, Tian F B, Young J, et al. Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. J Fluids Struct, 2018, 81: 69 doi: 10.1016/j.jfluidstructs.2018.04.019 [54] van Truong T, le T Q, Byun D, et al. Flexible wing kinematics of a free-flying beetle (rhinoceros beetle trypoxylus dichotomus). J Bionic Eng, 2012, 9(2): 177 doi: 10.1016/S1672-6529(11)60113-3 [55] Zeng L J, Hao Q, Kawachi K. A scanning projected line method for measuring a beating bumblebee wing. Opt Commun, 2000, 183(1-4): 37 doi: 10.1016/S0030-4018(00)00888-9 [56] Walker S M, Thomas A, Taylor G K. Deformable wing kinematics in free-flying hoverflies. J R Soc Interface, 2010, 7(42): 131 doi: 10.1098/rsif.2009.0120 [57] Wootton R J. Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, papilionoidea). J Exp Biol, 1993: 105 [58] Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 2009, 325(5947): 1549 doi: 10.1126/science.1175928 [59] Zheng L, Hedrick T L, Mittal R. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS One, 2013, 8(1): e53060 doi: 10.1371/journal.pone.0053060 [60] Le T Q, Truong T V, Park S H, et al. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J R Soc Interface, 2013, 10(85): 20130312 doi: 10.1098/rsif.2013.0312 [61] Du G, Sun M. Effects of wing deformation on aerodynamic forces in hovering hoverflies. J Exp Biol, 2010, 213(13): 2273 doi: 10.1242/jeb.040295 [62] Phan H V, Truong Q T, Au T K L, et al. Optimal flapping wing for maximum vertical aerodynamic force in hover: Twisted or flat? Bioinspir biomim, 2016, 11(4): 046007 [63] Jankauski M, Guo Z W, Shen I Y. The effect of structural deformation on flapping wing energetics. J Sound Vib, 2018, 429: 176 doi: 10.1016/j.jsv.2018.05.005 [64] Lehmann F O, Gorb S, Nasir N, et al. Elastic deformation and energy loss of flapping fly wings. J Exp Biol, 2011, 214(17): 2949 doi: 10.1242/jeb.045351 [65] Zhang C, Rossi C. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir Biomim, 2017, 12(2): 025005 doi: 10.1088/1748-3190/aa58d3 [66] Zhang W, Liu G Z, Zhang B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism. Acta Aerobaut Astronaut Sin, 2018, 39(9): 421979 doi: 10.7527/S1000-6893.2018.21966張威, 劉光澤, 張博利. 撲翼飛行器具有彈性阻尼撲動機構的能耗對比分析與研究. 航空學報, 2018, 39(9):421979 doi: 10.7527/S1000-6893.2018.21966 [67] Sahai R, Galloway K C, Wood R J. Elastic element integration for improved flapping-wing micro air vehicle performance. IEEE Trans Robotics, 2013, 29(1): 32 doi: 10.1109/TRO.2012.2218936 [68] Lau G K, Chin Y W, Goh J T W, et al. Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight. IEEE Trans Robotics, 2014, 30(5): 1187 doi: 10.1109/TRO.2014.2333112 [69] Hines L, Campolo D, Sitti M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance. IEEE Trans Robotics, 2014, 30(1): 220 doi: 10.1109/TRO.2013.2280057 [70] Wang H C, Du X L. A new kind of imitation bird flapping wing mechanism. J Tangshan Norm Univ, 2019, 41(6): 62 doi: 10.3969/j.issn.1009-9115.2019.06.016王紅超, 杜小雷. 一種新型仿鳥撲翼機構. 唐山師范學院學報, 2019, 41(6):62 doi: 10.3969/j.issn.1009-9115.2019.06.016 [71] Fu Q, Zhang S Y, Wang J B, et al. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on offboard monocular vision. Chin J Eng, 2020, 42(2): 249付強, 張樹禹, 王久斌, 等. 基于外部單目視覺的仿生撲翼飛行器室內定高控制. 工程科學學報, 2020, 42(2):249 [72] Fu Q, Wang J, Gong L, et al. Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control. Trans Nanjing Univ Aeronaut Astronaut, 2021, 38(2): 206 [73] Li L, Wang H W, Cui L. Attitude control of flapping wing aircraft based on energy optimization and ESO. Biomim Intell Robotics, 2021, 1: 100005 doi: 10.1016/j.birob.2021.100005 [74] Rodríguez F, Díaz-Bá?ez J M, Sanchez-Laulhe E, et al. Kinodynamic planning for an energy-efficient autonomous ornithopter. Comput Ind Eng, 2022, 163: 107814 doi: 10.1016/j.cie.2021.107814 [75] Hosoi A, Sato S, Ozawa Y, et al. A study on glide characteristics of a small flapping robot. J Japan Soc Design Eng, 2019, 54(4): 265 [76] Jiang G J. Dynamics Modeling and Flight Simulation of Flapping Wing Aircraft [Dissertation]. Changsha: National University of Defense Technology, 2015蔣國江. 撲翼變形飛行器的動力學建模與飛行仿真[學位論文]. 長沙: 國防科學技術大學, 2015 [77] Johnson L, Paley D A, Bruck H A. Modeling flight and battery dynamics of a flapping-gliding unmanned aerial vehicle. J Guid Control Dyn, 2021, 44(12): 2276 doi: 10.2514/1.G006138 [78] Johnson L, Paley D A, Bruck H A. Modeling the flight dynamics and battery utilization of a hybrid flapping-gliding UAV // AIAA Scitech 2021 Forum. Nashville. 2021: 2017 [79] Chen A, Song B F, Wang Z H, et al. A novel actuation strategy for an agile bio-inspired FWAV performing a morphing-coupled wingbeat pattern [J/OL]. arXiv preprint (2021-12-3) [2022-5-17].https://arxiv.org/abs/2111.02118 [80] Ma D F, Song B F, Wang Z H, et al. Development of a bird-like flapping-wing aerial vehicle with autonomous take-off and landing capabilities. J Bionic Eng, 2021, 18(6): 1291 doi: 10.1007/s42235-021-00085-w [81] Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413(6857): 697 doi: 10.1038/35099670 [82] Voelkl B, Portugal S J, Uns?ld M, et al. Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. PNAS, 2015, 112(7): 2115 doi: 10.1073/pnas.1413589112 [83] Andersson M, Wallander J. Kin selection and reciprocity in flight formation? Behav Ecol, 2004, 15(1): 158 [84] Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory &Appl, 2015, 32(10): 1298 doi: 10.7641/CTA.2015.50314邱華鑫, 段海濱, 范彥銘. 基于鴿群行為機制的多無人機自主編隊. 控制理論與應用, 2015, 32(10):1298 doi: 10.7641/CTA.2015.50314 [85] Yin Z, He W, Zou Y, et al. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Autom Sin, 2021, 47(6): 1355尹曌, 賀威, 鄒堯, 等. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動化學報, 2021, 47(6):1355 [86] Rayner J M. Estimating power curves of flying vertebrates. J Exp Biol, 1999, 202(pt 23): 3449 [87] Feng B B, Chen D R, Wang J D, et al. Bionic research on bird feather for drag reduction. Adv Mech Eng, 2015, 7(2): 849294 doi: 10.1155/2014/849294 [88] Bao H, Yang W Q, Ma D, et al. Numerical simulation of flapping airfoil with alula. Int J Micro Air Veh, 2020, 12: 1756829320977989 [89] Meng X G, Sun M. Aerodynamic effects of corrugation in flapping insect wings in forward flight. J Bionic Eng, 2011, 8(2): 140 doi: 10.1016/S1672-6529(11)60015-2 [90] Zhang Z H. A review of musculature studies in birds. Chin J Zool, 1999, 34(5): 41 doi: 10.3969/j.issn.0250-3263.1999.05.014張子慧. 鳥類肌肉系統研究綜述. 動物學雜志, 1999, 34(5):41 doi: 10.3969/j.issn.0250-3263.1999.05.014 [91] Zhang B L, Liu X J, Wang H, et al. Influence of elastic element parameters optimization on flapping wing transmission mechanism. Mech Sci Technol Aerosp Eng, 2021, 40(5): 801張博利, 劉新杰, 王昊, 等. 彈性元件參數優化對撲翼機構轉速波動影響研究. 機械科學與技術, 2021, 40(5):801 [92] Zhang W, Liu X J, Liu Y, et al. Flapping mechanism with elastic components: Dynamic analysis and experiment. Acta Aeronaut Astronaut Sin, 2020, 41(9): 423559張威, 劉新杰, 劉艷, 等. 帶彈性元件撲翼機構的動力學分析及實驗. 航空學報, 2020, 41(9):423559 [93] Xie P, Jiang H L, Zhou C Y. Design and dynamic analysis of a flapping wing air vehicle. J Aerosp Power, 2018, 33(3): 703謝鵬, 姜洪利, 周超英. 一種仿生撲翼飛行器的設計及動力學分析. 航空動力學報, 2018, 33(3):703 -