<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

仿生撲翼飛行器能耗研究進展

趙民 張祥 付強 張春華 賀威

趙民, 張祥, 付強, 張春華, 賀威. 仿生撲翼飛行器能耗研究進展[J]. 工程科學學報, 2022, 44(12): 2111-2123. doi: 10.13374/j.issn2095-9389.2022.05.17.003
引用本文: 趙民, 張祥, 付強, 張春華, 賀威. 仿生撲翼飛行器能耗研究進展[J]. 工程科學學報, 2022, 44(12): 2111-2123. doi: 10.13374/j.issn2095-9389.2022.05.17.003
ZHAO Min, ZHANG Xiang, FU Qiang, ZHANG Chun-hua, HE Wei. Research progress on the energy consumption of bionic flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2022, 44(12): 2111-2123. doi: 10.13374/j.issn2095-9389.2022.05.17.003
Citation: ZHAO Min, ZHANG Xiang, FU Qiang, ZHANG Chun-hua, HE Wei. Research progress on the energy consumption of bionic flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2022, 44(12): 2111-2123. doi: 10.13374/j.issn2095-9389.2022.05.17.003

仿生撲翼飛行器能耗研究進展

doi: 10.13374/j.issn2095-9389.2022.05.17.003
基金項目: 國家自然科學基金資助項目(62173031,61933001,62073031);北京科技大學中央高校基本科研業務費專項資金資助項目(FRF-TP-19-001C2)
詳細信息
    通訊作者:

    E-mail: fuqiang@ustb.edu.cn

  • 中圖分類號: TP242.6

Research progress on the energy consumption of bionic flapping-wing aerial vehicles

More Information
  • 摘要: 自然界中飛行生物利用肌肉、骨骼等結構的協同作用實現靈活、敏捷的飛行,具有撲動、懸停、滑翔等多種飛行模式。仿生撲翼飛行器是模擬鳥類和昆蟲等飛行模式的一類飛行器,通過機翼的周期性上下撲動產生飛行所需的升力和推力,具有隱蔽性好、能效高和飛行噪聲小等優點,得到了各研究機構的廣泛關注。由于撲翼飛行器自身的負載能力較小,很難攜帶大容量的電池,導致其續航時間有限。研究新型輕質高能量密度的電池和高仿生設計實現續航時間的提升,是撲翼飛行器重要的研究方向。但是,針對撲翼飛行器新型電池的研究還處于初級研發階段,尚不具備機載飛行測試的能力。研究人員從仿生機理分析、機構優化設計以及控制策略研究等方面入手,針對撲翼飛行器能耗問題開展了大量研究,并取得了階段性成果。總結了有關仿生撲翼飛行器能耗方面的研究進展,分析了靜態參數、動態參數和控制策略等對仿生撲翼飛行器能耗的影響,提出了降低能耗的措施,并對未來研究方向做出了展望。

     

  • 圖  1  生物翅膀結構. (a) 鳥類[28]; (b) 昆蟲[29]

    Figure  1.  Structure of biological wings: (a) birds[28]; (b) insects[29]

    圖  2  鳥類撲翼飛行一個周期的分解圖[32]. (a)~(f)為下撲階段; (g)~(l)為上撲階段

    Figure  2.  Decomposition of flapping wing movements in birds[32]: (a)?(f)show the downstroke of flapping motion; (g)?(l)show the upstroke of flapping motion

    圖  3  能耗/效率隨頻率的變化圖[45]. (a) 電機消耗的電能隨頻率變化; (b) 效率因數η隨頻率變化

    Figure  3.  Energy consumption and efficiency curve with the frequency of a flapping wing[45]: (a) electrical power consumed by the motor and (b) efficiency factor η as a function of frequency

    圖  4  壓電驅動和太陽能驅動飛行器. (a) Microfly[46]; (b) Robobee X-Wing[6]

    Figure  4.  Wing drive by piezoelectric materials or solar energy: (a) Microfly[46] ; (b) Robobee X-Wing[6]

    圖  5  采用輔助供電系統延長續航. (a) 壓電薄膜翅膀[47]; (b) 太陽能回收機翼[48]

    Figure  5.  Auxiliary power supply system to improve endurance: (a) piezoelectric thin film material wings[47]; (b) solar recovery wing[48]

    圖  6  仿生開閉機制[49]. (a) 單向孔機翼模型; (b) 羽毛機翼和薄膜機翼

    Figure  6.  Bionic opening and closing mechanism[49]: (a) model of the wing with one-way holes; (b) feather-covered flapping-wing and membrane wing

    圖  7  帶彈性阻尼結構的驅動結構[66]

    Figure  7.  Drive structure with elastic element[66]

    圖  8  帶柔性儲能元件的驅動機構[67-68]. (a) 哈佛大學微型撲翼飛行器; (b) 四連桿傳動機構; (c) 南洋理工大學的微型撲翼飛行器; (d) 聚酰亞胺薄膜鉸鏈彈性勢能存儲元件

    Figure  8.  Drive mechanism with flexible energy storage element[67-68]: (a) flapping-wing micro air vehicle of Harvard University; (b) transmission forming a four-bar; (c) flapping-wing micro air vehicle of Nanyang Technological University; (d) polyimide film hinges for elastic energy storage

    圖  9  Smartbird機翼被動彎折結構

    Figure  9.  Wing structure of Smartbird

    圖  10  戶外飛行能力測試[79]. (a) 傾斜轉彎; (b) 爬升; (c) 快速滾轉機動飛行

    Figure  10.  The ability test for outdoor flight [79]: (a) banking turn; (b) climb; (c) rapid rolling maneuver

    圖  11  四旋翼混合布局的撲翼飛行器研制[80]. (a) 風洞實驗裝置; (b) 四旋翼混合布局的撲翼飛行器原型機

    Figure  11.  Design of the hybrid layout flapping-wing air vehicle[80]: (a) experimental setup for the wind tunnel experiment; (b) prototype of the four-rotor hybrid layout flapping-wing air vehicle

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ramasamy M, Lee T E, Leishman J G. Flow field of a rotating-wing micro air vehicle. J Aircr, 2007, 44(4): 1236 doi: 10.2514/1.26415
    [2] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685 doi: 10.16383/j.aas.2017.c160581

    賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685 doi: 10.16383/j.aas.2017.c160581
    [3] Ma K Y, Chirarattananon P, Fuller S B, et al. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013, 340(6132): 603 doi: 10.1126/science.1231806
    [4] Graule M A, Chirarattananon P, Fuller S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science, 2016, 352(6288): 978 doi: 10.1126/science.aaf1092
    [5] Chen Y F, Wang H Q, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2017, 2(11): eaao5619 doi: 10.1126/scirobotics.aao5619
    [6] Jafferis N T, Helbling E F, Karpelson M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 2019, 570(7762): 491 doi: 10.1038/s41586-019-1322-0
    [7] De Croon G C, De Clercq K M, Ruijsink R, et al. Design, aerodynamics, and vision-based control of the DelFly. Int J Micro Air Veh, 2009, 1(2): 71 doi: 10.1260/175682909789498288
    [8] Scheper K Y W, Karásek M, Wagter C D, et al. First autonomous multi-room exploration with an insect-inspired flapping wing vehicle // 2018 IEEE International Conference on Robotics and Automation. Brisbane, 2018: 5546
    [9] Karásek M, Muijres F T, De Wagter C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361(6407): 1089 doi: 10.1126/science.aat0350
    [10] Phan H V, Kang T, Park H C. Design and stable flight of a 21g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspir Biomim, 2017, 12(3): 036006 doi: 10.1088/1748-3190/aa65db
    [11] Phan H V, Aurecianus S, Kang T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int J Micro Air Veh, 2019, 11: 1756829319861371
    [12] Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370(6521): 1214 doi: 10.1126/science.abd3285
    [13] Jackowski Z J. Design and Construction of an Autonomous Ornithopter [Dissertation]. Cambridge: Massachusetts Institute of Technology, 2009
    [14] Zufferey R, Tormo-Barbero J, Guzmán M M, et al. Design of the high-payload flapping wing robot E-flap. IEEE Robotics Autom Lett, 2021, 6(2): 3097 doi: 10.1109/LRA.2021.3061373
    [15] Send W, Fischer M, Jebens K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics // 28th International Congress of the Aeronautical Sciences. Brisbane, 2012: 1
    [16] Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle // 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, 2012: 588
    [17] He W, Liu S P, Huang H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot. Control Theory Appl, 2022, 39(1): 12 doi: 10.7641/CTA.2021.00394

    賀威, 劉上平, 黃海豐, 等. 獨立驅動的仿鳥撲翼飛行機器人的系統設計與實驗. 控制理論與應用, 2022, 39(1):12 doi: 10.7641/CTA.2021.00394
    [18] Fu Q, Wang X Q, Zou Y, et al. A miniature video stabilization system for flapping-wing aerial vehicles. Guid Navigat Control, 2022, 2(1): 2250001 doi: 10.1142/S2737480722500017
    [19] Huang H F, He W, Wang J B, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ ASME Trans Mech, 2022, http://dx.doi.org/10.1109/TMECH.2022.3182418
    [20] He W, Mu X X, Zhang L, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Automatic Sin, 2020, 8(1): 148
    [21] Huang H F, He W, Zou Y, et al. System design and control of a butterfly-inspired flapping-wing aerial robot based on wire-driven steering. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.TP.20211117.1454.048.html

    黃海豐, 賀威, 鄒堯, 等. 基于線驅轉向的仿蝴蝶撲翼飛行機器人系統設計與控制. 控制理論與應用, http://kns.cnki.net/kcms/detail/44.1240.TP.20211117.1454.048.html
    [22] Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
    [23] Pan E Z, Xu H, Yuan H, et al. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomim Intell Robotics, 2021, 1: 100002 doi: 10.1016/j.birob.2021.100002
    [24] Zhang Y X, Wang X J, Wang S P, et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation. J Beijing Univ Aeronaut Astronaut, https://kns.cnki.net/kcms/detail/11.2625.V.20210913.1521.002.html

    張益鑫, 王興堅, 王少萍, 等. 基于特征運動觀測的蝴蝶前飛規律及樣機驗證. 北京航空航天大學學報,https://kns.cnki.net/kcms/detail/11.2625.V.20210913.1521.002.html
    [25] Chi P C, Zhang W P, Chen W Y, et al. Design and fabrication of an SU-8 biomimetic flapping-wing micro air vehicle by MEMS technology. Robot, 2011, 33(3): 366 doi: 10.3724/SP.J.1218.2011.00366

    遲鵬程, 張衛平, 陳文元, 等. 基于MEMS技術的SU-8仿昆蟲微撲翼飛行器設計及制作. 機器人, 2011, 33(3):366 doi: 10.3724/SP.J.1218.2011.00366
    [26] Zou Y, Zhang W P, Ke X J, et al. The design and microfabrication of a sub 100 Mg insect-scale flapping-wing robot. Micro Nano Lett, 2017, 12(5): 297 doi: 10.1049/mnl.2016.0687
    [27] Fu Q, Zhang X, Zhao M, et al. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle. Chin J Eng, 2022, 44(4): 767

    付強, 張祥, 趙民, 等. 仿生撲翼飛行器風洞實驗研究進展. 工程科學學報, 2022, 44(4):767
    [28] Cai C R. Study on Aerodynamic Performance of Bionic Wing Based on Carrier Pigeon Wing [Dissertation]. Changchun: Jilin University, 2018

    蔡常睿. 基于信鴿翅膀的仿生機翼氣動性能研究[學位論文]. 長春: 吉林大學, 2018
    [29] Liu L. The Design Technologies of Biomimetic Wings for Flapping-Wing MAVs [Dissertation]. Xi’an: Northwestern Polytechnical University, 2007

    劉嵐. 微型撲翼飛行器的仿生翼設計技術研究[學位論文]. 西安: 西北工業大學, 2007
    [30] Wu J C, Popovi Z. Realistic modeling of bird flight animations. Acm Trans Graph, 2003, 22(3): 888 doi: 10.1145/882262.882360
    [31] Bajec I L, Heppner F H. Organized flight in birds. Animal Behav, 2009, 78(4): 777 doi: 10.1016/j.anbehav.2009.07.007
    [32] Yang Y G, Su H P, Gu X D, et al. Numerical simulation analysis of the effects of flight angle and bend-fold on bird-like flapping-wing air vehicle. J Syst Simul, 2018, 30(5): 1781 doi: 10.16182/j.issn1004731x.joss.201805020

    楊永剛, 蘇漢平, 顧新冬, 等. 飛行角度及彎曲折疊對仿鳥撲翼飛行器影響分析. 系統仿真學報, 2018, 30(5):1781 doi: 10.16182/j.issn1004731x.joss.201805020
    [33] Dickinson M H. Come fly with me. Eng Sci, 2003, 3: 10
    [34] Gu W, Robinson O, Rockwell D. Control of vortices on a delta wing by leading-edge injection. AIAA J, 1993, 31(7): 1177 doi: 10.2514/3.11749
    [35] Wang Q, Goosen J F L, Van Keulen A. Optimal hovering kinematics with respect to various flapping-wing shapes // IMAV 2013: Proceedings of the International Micro Air Vehicle Conference and Flight Competition. Toulouse, 2013
    [36] Yin D F. Design of Robotic Bat Wing and Research on the Force and Power of Bat Wing [Dissertation]. Nanjing: Southeast University, 2016

    尹東富. 仿蝙蝠機器翅設計與蝙蝠翅膀受力及功耗研究[學位論文]. 南京: 東南大學, 2016
    [37] Li M, Liu T, Shi Z, et al. Dense all‐electrochem-active electrodes for all-solid-state lithium batteries. Adv Mater, 2021, 33(26): 2008723 doi: 10.1002/adma.202008723
    [38] Zuo W J, Qu Y H, Qi P H, et al. Preparation and performance of 3D-printed positive electrode for lithium-ion battery. Chin J Eng, 2020, 42(3): 358

    左文婧, 屈銀虎, 祁攀虎, 等. 3D打印鋰離子電池正極的制備及性能. 工程科學學報, 2020, 42(3):358
    [39] Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270

    劉遠峰, 張秀玲, 李從舉. 微生物燃料電池碳基陽極材料的研究進展. 工程科學學報, 2020, 42(3):270
    [40] Liu Y, Zhang Y L. Study on aerodynamic characteristics and energy consumption of flapping wing micro air vehicle // 10th National Conference on Fluid Mechanics. Hangzhou, 2018: 247

    劉懿, 張艷來. 撲翼微型飛行器氣動特性與能耗研究//第十屆全國流體力學學術會議. 杭州, 2018: 247
    [41] Wu Y D. Study on Aerodynamic Characteristics and the Design of Wings of Bio-Inspired Flapping Wing Micro Aerial Vehicles [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2020

    吳應東. 仿生撲翼微型飛行器的機翼設計及其氣動特性研究[學位論文]. 成都: 電子科技大學, 2020
    [42] Nguyen T A, Phan H V, Au T K L, et al. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspir Biomim, 2016, 11(4): 046001 doi: 10.1088/1748-3190/11/4/046001
    [43] Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees. Proc Bio Sci, 2013, 280(1759): 20130531
    [44] Nakata T, Liu H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach. Proc Biol Sci, 2012, 279(1729): 722
    [45] Thiria B, Godoy-Diana R. How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(1 Pt 2): 015303
    [46] Shang J K, Combes S A, Finio B M, et al. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir Biomim, 2009, 4(3): 036002 doi: 10.1088/1748-3182/4/3/036002
    [47] Fang Z F. Design and Experimental Study on Energy Recovery Wings of Flapping-Wing Micro Air Vehicle [Dissertation]. Changchun: Jilin University, 2019

    房志飛. 微型撲翼飛行器能量回收翅翼的設計與實驗研究[學位論文]. 長春: 吉林大學, 2019
    [48] Perez-Rosado A, Bruck H A, Gupta S K. Enhancing the design of solar-powered flapping wing air vehicles using multifunctional structural components // International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston, 2015: 47570
    [49] Yang W Q, Song B F, Gao G L, et al. Experimental study on aerodynamic performance of flapping wing with one-way holes/gaps // Asia-Pacific International Symposium on Aerospace Technology. Singapore, 2018: 1160
    [50] Fu P, Song B F, Liang S R, et al. An experimental research about the characteristics of thrust and power FWAV. J Northwest Polytech Univ, 2016, 34(6): 976 doi: 10.3969/j.issn.1000-2758.2016.06.008

    付鵬, 宋筆鋒, 梁少然, 等. 撲翼的推力特性與功率特性的實驗研究. 西北工業大學學報, 2016, 34(6):976 doi: 10.3969/j.issn.1000-2758.2016.06.008
    [51] Ke X J, Zhang W P, Cai X F, et al. Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy. Aerosp Sci Technol, 2017, 64: 192 doi: 10.1016/j.ast.2017.01.019
    [52] Wang Q, Goosen J F L, Keulen F V. Optimal pitching axis location of flapping wings for efficient hovering flight. Bioinspir Biomim, 2017, 12(5): 056001 doi: 10.1088/1748-3190/aa7795
    [53] Shahzad A, Tian F B, Young J, et al. Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. J Fluids Struct, 2018, 81: 69 doi: 10.1016/j.jfluidstructs.2018.04.019
    [54] van Truong T, le T Q, Byun D, et al. Flexible wing kinematics of a free-flying beetle (rhinoceros beetle trypoxylus dichotomus). J Bionic Eng, 2012, 9(2): 177 doi: 10.1016/S1672-6529(11)60113-3
    [55] Zeng L J, Hao Q, Kawachi K. A scanning projected line method for measuring a beating bumblebee wing. Opt Commun, 2000, 183(1-4): 37 doi: 10.1016/S0030-4018(00)00888-9
    [56] Walker S M, Thomas A, Taylor G K. Deformable wing kinematics in free-flying hoverflies. J R Soc Interface, 2010, 7(42): 131 doi: 10.1098/rsif.2009.0120
    [57] Wootton R J. Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, papilionoidea). J Exp Biol, 1993: 105
    [58] Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 2009, 325(5947): 1549 doi: 10.1126/science.1175928
    [59] Zheng L, Hedrick T L, Mittal R. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS One, 2013, 8(1): e53060 doi: 10.1371/journal.pone.0053060
    [60] Le T Q, Truong T V, Park S H, et al. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J R Soc Interface, 2013, 10(85): 20130312 doi: 10.1098/rsif.2013.0312
    [61] Du G, Sun M. Effects of wing deformation on aerodynamic forces in hovering hoverflies. J Exp Biol, 2010, 213(13): 2273 doi: 10.1242/jeb.040295
    [62] Phan H V, Truong Q T, Au T K L, et al. Optimal flapping wing for maximum vertical aerodynamic force in hover: Twisted or flat? Bioinspir biomim, 2016, 11(4): 046007
    [63] Jankauski M, Guo Z W, Shen I Y. The effect of structural deformation on flapping wing energetics. J Sound Vib, 2018, 429: 176 doi: 10.1016/j.jsv.2018.05.005
    [64] Lehmann F O, Gorb S, Nasir N, et al. Elastic deformation and energy loss of flapping fly wings. J Exp Biol, 2011, 214(17): 2949 doi: 10.1242/jeb.045351
    [65] Zhang C, Rossi C. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir Biomim, 2017, 12(2): 025005 doi: 10.1088/1748-3190/aa58d3
    [66] Zhang W, Liu G Z, Zhang B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism. Acta Aerobaut Astronaut Sin, 2018, 39(9): 421979 doi: 10.7527/S1000-6893.2018.21966

    張威, 劉光澤, 張博利. 撲翼飛行器具有彈性阻尼撲動機構的能耗對比分析與研究. 航空學報, 2018, 39(9):421979 doi: 10.7527/S1000-6893.2018.21966
    [67] Sahai R, Galloway K C, Wood R J. Elastic element integration for improved flapping-wing micro air vehicle performance. IEEE Trans Robotics, 2013, 29(1): 32 doi: 10.1109/TRO.2012.2218936
    [68] Lau G K, Chin Y W, Goh J T W, et al. Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight. IEEE Trans Robotics, 2014, 30(5): 1187 doi: 10.1109/TRO.2014.2333112
    [69] Hines L, Campolo D, Sitti M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance. IEEE Trans Robotics, 2014, 30(1): 220 doi: 10.1109/TRO.2013.2280057
    [70] Wang H C, Du X L. A new kind of imitation bird flapping wing mechanism. J Tangshan Norm Univ, 2019, 41(6): 62 doi: 10.3969/j.issn.1009-9115.2019.06.016

    王紅超, 杜小雷. 一種新型仿鳥撲翼機構. 唐山師范學院學報, 2019, 41(6):62 doi: 10.3969/j.issn.1009-9115.2019.06.016
    [71] Fu Q, Zhang S Y, Wang J B, et al. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on offboard monocular vision. Chin J Eng, 2020, 42(2): 249

    付強, 張樹禹, 王久斌, 等. 基于外部單目視覺的仿生撲翼飛行器室內定高控制. 工程科學學報, 2020, 42(2):249
    [72] Fu Q, Wang J, Gong L, et al. Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control. Trans Nanjing Univ Aeronaut Astronaut, 2021, 38(2): 206
    [73] Li L, Wang H W, Cui L. Attitude control of flapping wing aircraft based on energy optimization and ESO. Biomim Intell Robotics, 2021, 1: 100005 doi: 10.1016/j.birob.2021.100005
    [74] Rodríguez F, Díaz-Bá?ez J M, Sanchez-Laulhe E, et al. Kinodynamic planning for an energy-efficient autonomous ornithopter. Comput Ind Eng, 2022, 163: 107814 doi: 10.1016/j.cie.2021.107814
    [75] Hosoi A, Sato S, Ozawa Y, et al. A study on glide characteristics of a small flapping robot. J Japan Soc Design Eng, 2019, 54(4): 265
    [76] Jiang G J. Dynamics Modeling and Flight Simulation of Flapping Wing Aircraft [Dissertation]. Changsha: National University of Defense Technology, 2015

    蔣國江. 撲翼變形飛行器的動力學建模與飛行仿真[學位論文]. 長沙: 國防科學技術大學, 2015
    [77] Johnson L, Paley D A, Bruck H A. Modeling flight and battery dynamics of a flapping-gliding unmanned aerial vehicle. J Guid Control Dyn, 2021, 44(12): 2276 doi: 10.2514/1.G006138
    [78] Johnson L, Paley D A, Bruck H A. Modeling the flight dynamics and battery utilization of a hybrid flapping-gliding UAV // AIAA Scitech 2021 Forum. Nashville. 2021: 2017
    [79] Chen A, Song B F, Wang Z H, et al. A novel actuation strategy for an agile bio-inspired FWAV performing a morphing-coupled wingbeat pattern [J/OL]. arXiv preprint (2021-12-3) [2022-5-17].https://arxiv.org/abs/2111.02118
    [80] Ma D F, Song B F, Wang Z H, et al. Development of a bird-like flapping-wing aerial vehicle with autonomous take-off and landing capabilities. J Bionic Eng, 2021, 18(6): 1291 doi: 10.1007/s42235-021-00085-w
    [81] Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413(6857): 697 doi: 10.1038/35099670
    [82] Voelkl B, Portugal S J, Uns?ld M, et al. Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. PNAS, 2015, 112(7): 2115 doi: 10.1073/pnas.1413589112
    [83] Andersson M, Wallander J. Kin selection and reciprocity in flight formation? Behav Ecol, 2004, 15(1): 158
    [84] Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory &Appl, 2015, 32(10): 1298 doi: 10.7641/CTA.2015.50314

    邱華鑫, 段海濱, 范彥銘. 基于鴿群行為機制的多無人機自主編隊. 控制理論與應用, 2015, 32(10):1298 doi: 10.7641/CTA.2015.50314
    [85] Yin Z, He W, Zou Y, et al. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Autom Sin, 2021, 47(6): 1355

    尹曌, 賀威, 鄒堯, 等. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動化學報, 2021, 47(6):1355
    [86] Rayner J M. Estimating power curves of flying vertebrates. J Exp Biol, 1999, 202(pt 23): 3449
    [87] Feng B B, Chen D R, Wang J D, et al. Bionic research on bird feather for drag reduction. Adv Mech Eng, 2015, 7(2): 849294 doi: 10.1155/2014/849294
    [88] Bao H, Yang W Q, Ma D, et al. Numerical simulation of flapping airfoil with alula. Int J Micro Air Veh, 2020, 12: 1756829320977989
    [89] Meng X G, Sun M. Aerodynamic effects of corrugation in flapping insect wings in forward flight. J Bionic Eng, 2011, 8(2): 140 doi: 10.1016/S1672-6529(11)60015-2
    [90] Zhang Z H. A review of musculature studies in birds. Chin J Zool, 1999, 34(5): 41 doi: 10.3969/j.issn.0250-3263.1999.05.014

    張子慧. 鳥類肌肉系統研究綜述. 動物學雜志, 1999, 34(5):41 doi: 10.3969/j.issn.0250-3263.1999.05.014
    [91] Zhang B L, Liu X J, Wang H, et al. Influence of elastic element parameters optimization on flapping wing transmission mechanism. Mech Sci Technol Aerosp Eng, 2021, 40(5): 801

    張博利, 劉新杰, 王昊, 等. 彈性元件參數優化對撲翼機構轉速波動影響研究. 機械科學與技術, 2021, 40(5):801
    [92] Zhang W, Liu X J, Liu Y, et al. Flapping mechanism with elastic components: Dynamic analysis and experiment. Acta Aeronaut Astronaut Sin, 2020, 41(9): 423559

    張威, 劉新杰, 劉艷, 等. 帶彈性元件撲翼機構的動力學分析及實驗. 航空學報, 2020, 41(9):423559
    [93] Xie P, Jiang H L, Zhou C Y. Design and dynamic analysis of a flapping wing air vehicle. J Aerosp Power, 2018, 33(3): 703

    謝鵬, 姜洪利, 周超英. 一種仿生撲翼飛行器的設計及動力學分析. 航空動力學報, 2018, 33(3):703
  • 加載中
圖(11)
計量
  • 文章訪問數:  898
  • HTML全文瀏覽量:  362
  • PDF下載量:  134
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-17
  • 網絡出版日期:  2022-06-14
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回