-
摘要: 以不同堿度的燒結礦及燒結礦與塊礦的混合礦為研究對象,利用荷重軟化熔滴裝置,考察了燒結礦堿度對綜合爐料軟熔性能及不同爐料間交互作用的影響。研究發現:隨著燒結礦堿度增加,爐料結構中塊礦的質量配加比例提高,爐料間的交互作用增強,主要表現為綜合爐料軟化開始溫度及熔融開始溫度降低,混合爐料的透氣性得到改善。爐料結構的變化使礦物間的交互反應隨著燒結礦堿度的提高而增強,進而導致液相成分發生改變,降低了初渣物相熔點,而燒結礦堿度過高時會惡化料柱的透氣性。同時通過掃描電子顯微鏡?能量色散譜儀(SEM?EDS)及X射線衍射(XRD)精修表征整個還原過程燒結礦物相變化,渣相中主要物相為浮氏體和硅酸鈣,隨著燒結礦堿度增加,在不同斷點2CaO·SiO2的含量呈現降低趨勢,表明燒結礦還原過程生成的高熔點物相隨之降低,綜合爐料的液相生成溫度隨之降低,爐料間交互作用增強。因此,適當提高燒結礦堿度,提高塊礦入爐的質量配比,利于高爐的強化冶煉。Abstract: With the deepening of the concept of interactive reaction and the development of several studies, metallurgists are no longer simply concerned with the metallurgical properties of a single charge. Instead, they comprehensively consider the interactive reaction of composite burdens. The interactive reaction is mainly affected by the chemical composition, microstructure, reduction temperature, and other factors of the ferrous burdens. In this study, taking a sinter with different basicities and a mixed ore of sinter and lump as the research object, the effect of sinter basicity on the smelting and dripping paraments of a composite burden and the interactive reaction between different burdens was investigated using melting–dripping equipment. The results show that the dripping temperature of a single sinter increases with sinter basicity. In the integrated burdens protocol, the proportion of lump ore increased, and the interaction between the burdens was enhanced, which is mainly manifested as a reduced softening start temperature and melting start temperature of the composite burden. The air permeability of the mixed charge was improved. A change of burden structure enhances the interaction between minerals with increasing sinter basicity, resulting in a change in the liquid phase composition, which reduces the melting point of the primary slag phase, and when the basicity of the sintered is too high, it will deteriorate the gas permeability of the material column. This result is not conducive to the intensive smelting of blast furnaces. At the same time, the sintered mineral phase changes throughout the reduction process were characterized using SEM-EDS and XRD, and the main phases in the slag phase are wustite and calcium silicate. The interactive reaction between the sinter and lump produces low melting point materials, which is verified by calculating the phase diagram of CaO–SiO2–FeO. With increasing sinter basicity, the content of 2CaO·SiO2 at different breakpoints decreased. This result shows that the high melting point phase formed during the reduction process of the sinter decreases, the liquid phase formation temperature of the composite burden decreases, and the interaction between the burdens increases. Therefore, appropriately increasing the sinter basicity and increasing the lump ore proportion benefits the enhanced smelting of a blast furnace. The theoretical and experimental results obtained in this research are of great importance for improving the production application of the proportion of lump in the furnace and developing efficient and low-carbon ironmaking.
-
Key words:
- sinter /
- lump /
- composite burden /
- interaction /
- metallurgical properties
-
表 1 含鐵爐料的化學成分
Table 1. Chemical composition of ferrous burdens
Sample w(TFe)/% w(FeO)/% w(SiO2)/% w(CaO)/% w(MgO)/% w(Al2O3)/% R2 S-1 56.26 6.08 5.00 9.01 1.47 1.72 1.80 S-2 55.94 5.66 4.98 9.46 1.47 1.71 1.90 S-3 55.61 5.31 4.98 9.95 1.47 1.71 2.00 S-4 55.26 5.43 4.97 10.45 1.47 1.70 2.10 S-5 54.94 5.53 4.97 10.93 1.47 1.69 2.20 P-1 64.05 0.37 3.05 2.55 0.65 0.81 0.84 L-1 61.72 0.99 3.62 0.21 0.12 1.26 0.06 L-2 56.54 1.56 15.72 0.20 0.10 0.78 0.01 表 2 綜合爐料結構
Table 2. Compositions of integrated burdens
Scheme Proportion of iron ore(mass fraction) B-1 84.0% S-1+5.0% P-1+10.0% L-1+1.0% L-2 B-2 78.0% S-2+5.0% P-1+16.0% L-1+1.0% L-2 B-3 75.5% S-3+5.0% P-1+17.5% L-1+2.0% L-2 B-4 73.0% S-4+5.0% P-1+19.0% L-1+3.0% L-2 B-5 71.0% S-4+5.0% P-1+20.0% L-1+4.0% L-2 表 3 含鐵爐料單礦荷重軟化熔滴實驗結果
Table 3. Melting and dripping parameters of single ferrous burdens
Sample T10%/℃ T40%/℃ △t1/℃ Ts/℃ Td/℃ △tds/℃ △Pmax/kPa S/(kPa·℃) S-1 1204 1297 93 1328 1543 215 28.06 2820.9 S-2 1192 1288 96 1324 1512 188 22.3 2623.5 S-3 1189 1292 103 1330 1544 214 17.96 2641.5 S-4 1185 1283 98 1325 1534 209 24.86 3410.1 S-5 1165 1284 119 1330 1540 210 26.04 3574.6 L-1 1095 1266 171 1275 1447 172 20.48 830.6 L-2 1089 1220 131 1226 1264 44 7.12 123.6 表 4 綜合爐料荷重軟化熔滴實驗結果
Table 4. Melting and dripping parameters of integrated burdens
Scheme T10%/℃ T40%/℃ Δt1/℃ Ts/℃ Td/℃ Δtds/℃ △Pmax/kPa S/(kPa·℃) B-1 1249 1329 80 1338 1452 114 15.68 1204.58 B-2 1233 1326 93 1327 1445 118 16.78 1223.42 B-3 1235 1333 98 1318 1442 124 16.32 1104.32 B-4 1234 1320 86 1309 1432 123 19.12 1089.04 B-5 1206 1333 127 1302 1431 129 26.90 1916.48 www.77susu.com -
參考文獻
[1] Tan C L, Mao X M, Xu W R. Effect of lump ore ratio on metallurgical properties of blast furnace burden. Baosteel Technol, 2021(2): 37談承麟, 毛曉明, 徐萬仁. 塊礦配比對高爐配合爐料冶金性能影響規律研究. 寶鋼技術, 2021(2):37 [2] Niu L L, Liu Z J, Zhang J L, et al. Effect of blast conditions and lump ore ratio on softening-melting properties of iron-bearing charge. China Metall, 2019, 29(7): 6牛樂樂, 劉征建, 張建良, 等. 鼓風條件及塊礦比例對爐料軟熔性能的影響. 中國冶金, 2019, 29(7):6 [3] Zhu Y J, Xu H, Wang S B. Production practice under higher lump ore ratio in baosteel No.4 BF. Ironmaking, 2019, 38(1): 32朱勇軍, 徐輝, 王士彬. 寶鋼4號高爐提高塊礦比例實踐. 煉鐵, 2019, 38(1):32 [4] Bo S Y, Hu C Q, Shi X F, et al. Development and prospect of magnesium flux pellets. J North China Univ Sci Technol Nat Sci, 2021, 43(3): 40薄勝岳, 胡長慶, 師學峰, 等. 鎂質熔劑性球團礦發展現狀及展望. 華北理工大學學報(自然科學版), 2021, 43(3):40 [5] Shen F M, Gao Q J, Wei G, et al. Densification process of MgO bearing pellets. Steel Res Int, 2015, 86(6): 644 doi: 10.1002/srin.201400372 [6] Wang X D, Jin Y L. Strategy analysis and testing study of high ratio of pellet utilized in blast furnace. Iron &Steel, 2021, 56(5): 7王新東, 金永龍. 高爐使用高比例球團的戰略思考與球團生產的試驗研究. 鋼鐵, 2021, 56(5):7 [7] Zang C. Using dust to produce charge suitable for blast furnace smelting—Research on mechanical properties of metallized charge // Proceedings of the 2020 National Metallurgical Energy and Environmental Protection Technology Exchange Conference. Tangshan, 2020: 338張晨. 利用粉塵生產適合高爐冶煉的爐料—金屬化爐料力學性能研究 // 2020年全國冶金能源環保技術交流會會議文集. 唐山, 2020: 338 [8] Zhang X X, Han H L, Jiang X. Experiment on metallurgical properties of blast furnace burden containing metalized pellets. China Metall, 2015, 25(5): 15張旭孝, 韓宏亮, 姜曦. 高爐添加金屬化球團爐料的冶金性能試驗. 中國冶金, 2015, 25(5):15 [9] Gao J J, Zhang Y Y, Qi Y H, et al. Energy consumption analysis on blast furnace ironmaking process using pre-reduced burden. Iron &Steel, 2014, 49(7): 61高建軍, 張穎異, 齊淵洪, 等. 高爐冶煉預還原爐料能耗分析. 鋼鐵, 2014, 49(7):61 [10] Peng Y, Cao X C, Zhang Y Z. New progresses of energy saving solutions in typical iron and steel making process flow. China Metall, 2017, 27(5): 8彭巖, 曹先常, 張玉柱. 鋼鐵典型工序流程節能技術新進展. 中國冶金, 2017, 27(5):8 [11] Ye K W, Feng G S. Development and application of pellets in my country—the most important technical measures for energy saving and emission reduction in blast furnace ironmaking // Proceedings of the 2010 National Ironmaking Production Technology Conference and Ironmaking Academic Annual Conference (Part 1). Beijing, 2017, 27(05): 8葉匡吾, 馮根生. 我國球團礦的發展及應用—高爐煉鐵節能、減排最重要的技術措施 // 2010年全國煉鐵生產技術會議暨煉鐵學術年會文集(上). 北京, 2017, 27(05):8 [12] Xu M X. Influences of metallurgical properties of sinter on its quality and major operation indexes of blast furnace. Sinter Pelletizing, 2014, 39(3): 1許滿興. 燒結礦冶金性能對其質量和高爐主要操作指標的影響. 燒結球團, 2014, 39(3):1 [13] Lan D, Li T L, Sun C Y, et al. Slag evolution of Ti-bearing high basicity sinter during softening-melting process. Iron &Steel, 2018, 53(9): 7蘭東, 李廷樂, 孫長余, 等. 含鈦高堿度燒結礦軟熔成渣行為. 鋼鐵, 2018, 53(9):7 [14] Chen W, Li J P, Shen Y, et al. Test study on the influence of sinter basicity change on the softening dripping behavior. Henan Metall, 2016, 24(6): 9陳偉, 李俊平, 申勇, 等. 燒結礦堿度變化對軟熔滴落性能影響的試驗研究. 河南冶金, 2016, 24(6):9 [15] Loo C E, Matthews L T, O'Dea D P. Lump ore and sinter behaviour during softening and melting. ISIJ Int, 2011, 51(6): 930 doi: 10.2355/isijinternational.51.930 [16] Zhang K F, Wu S L, Liu X L, et al. The characteristics of softening and melting and the formation of the primary slag of different ferrous burden materials. Sci Technol Eng, 2015, 15(13): 36張開發, 吳勝利, 劉新亮等. 不同單種爐料熔滴特征及初渣形成變化. 科學技術與工程, 2015, 15(13):36 [17] Wu S L, Han H L, Xu H F, et al. Increasing lump ores proportion in blast furnace based on the high-temperature interactivity of iron bearing materials. ISIJ Int, 2010, 50(5): 686 doi: 10.2355/isijinternational.50.686 [18] Wu S L, Han H L, Liu X Q. Mathematical model for blast furnace burden optimization based on the high-temperature reactivity. ISIJ Int, 2010, 50(7): 987 doi: 10.2355/isijinternational.50.987 [19] Wu S L, Han H L, Xu H F, et al. Research on mechanism of interaction between sinter and lump ores in blast furnace. Chin J Process Eng, 2010, 10(Suppl 1): 37吳勝利, 韓宏亮, 許海法等. 高爐內燒結礦與塊礦高溫交互反應機理研究. 過程工程學報, 2010, 10(增刊 1):37 [20] Wu S L, Xu H F, Wang G J, et al. Basic study of modern blast furnace using natural lump ores rationally. J Univ Sci Technol Beijing, 2007, 29(3): 320吳勝利, 許海法, 汪國俊, 等. 現代高爐合理使用天然塊礦的基礎研究. 北京科技大學學報. 2007, 29(3): 320 [21] Wu S L, Tuo B Y, Zhang L H, et al. New evaluation methods discussion of softening-melting and dropping characteristic of BF iron bearing burden. Steel Res Int, 2014, 85(2): 233 doi: 10.1002/srin.201300061 [22] Yang W J, Zhou Z Y, Pinson D, et al. A new approach for studying softening and melting behavior of particles in a blast furnace cohesive zone. Metall Mater Trans B, 2015, 46(2): 977 doi: 10.1007/s11663-014-0223-8 [23] Nishimura T, Higuchi K, Naito M, et al. Evaluation of softening, shrinking and melting reduction behavior of raw materials for blast furnace. ISIJ Int, 2011, 51(8): 1316 doi: 10.2355/isijinternational.51.1316 [24] Bi X G, Wu M, Zhou J D, et al. Development and application of optimized blast furnace burdening model. Ironmaking, 2017, 36(2): 10畢學工, 吳名, 周進東, 等. 優化高爐配礦模型的開發及應用. 煉鐵, 2017, 36(2):10 [25] Long F, Shen F M, Guo X Z, et al. Discussion on adequate BF burden mix. Ironmaking, 2020, 39(3): 35龍防, 沈峰滿, 郭憲臻, 等. 高爐合理爐料結構探析. 煉鐵, 2020, 39(3):35 [26] Niu X Y. Study on reasonable burden structure of blast furnace for smelting low-grade ore. Metall Mater, 2018, 38(4): 85牛西園. 冶煉低品位礦高爐合理爐料結構研究. 冶金與材料, 2018, 38(4):85 [27] Pan Y Z. Study on the Interaction of Iron-containing Burdens and its Influence on Permeability of Cohesive Zone in Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2020潘玉柱. 高爐含鐵爐料交互作用及其對軟熔帶透氣性影響研究[學位論文]. 北京: 北京科技大學, 2020 [28] Lü Q, Wang F J, Li H J. Rational burden structure by droplet test in Xuansteel blast furnace. Iron &Steel, 2016, 51(6): 19呂慶, 王福佳, 李豪杰. 宣鋼高爐合理爐料結構熔滴試驗. 鋼鐵, 2016, 51(6):19 [29] Liu Z G, Chu M S, Wang H T, et al. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite. Int J Miner Metall Mater, 2016, 23(1): 25 doi: 10.1007/s12613-016-1207-2 [30] Zhou J D, Li J L, Zhu L. Effects of zinc on the properties of blast furnace cohesive zone and zinc accumulation in dropping zone. J Wuhan Univ Sci Technol, 2020, 43(4): 241周進東, 李九林, 竺龍. 鋅對高爐軟熔帶性能及滴落帶鋅收入量的影響. 武漢科技大學學報, 2020, 43(4):241 -