Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings
-
摘要: 為探明超細金屬尾礦粉在石灰–石膏體系中的早期水化固結特性,以生石灰、石膏和鐵尾砂為原料,采用超細粉磨制備了無熟料鐵尾砂粉固結材料,提取水化漿體3 min~24 h的液相并測試了其離子濃度及電導率,結合水化放熱速率曲線及掃描電鏡(SEM)、X-ray衍射分析(XRD)、熱重–差熱分析(TG–DSC)等測試結果,研究了固結漿體早期水化行為與液相特性變化的關系。結果表明:固液混合后液相各離子濃度快速上升,在10~30 min達到峰值后快速下降,180 min之后以較緩的速度繼續下降;液相電導率與Ca2+、OH–和SO42–離子總濃度變化有較高的一致性;固結材料水化過程中有兩次放熱行為,起止時間分別為0~15 min和20~180 min;水化產物物相分析顯示漿體中90 min可見AFt特征峰及C–S–H吸熱峰。實驗證明:在石灰–石膏–水體系中,鐵尾砂粉表面的非晶態SiO2和Al2O3能夠快速溶解并發生水化反應,生成AFt及C–S–H,水化產物對未水化鐵尾砂顆粒膠結固化,使固結體產生強度;延長粉磨時間可顯著提高鐵尾砂表面非晶態硅鋁成分含量及石灰、石膏的溶解速率,加速漿體的水化并增加水化產物的生成量。Abstract: To investigate the early hydration and consolidation mechanism of superfine metal tailings powder in the CaO–CaSO4–H2O system, a clinker-free consolidation material based on iron tailings powder was prepared by superfine grinding lime, gypsum, and iron tailings. From 3 min to 24 h, the liquid phase of the hydrated slurry was extracted by centrifugation and high-pressure extraction. The changes in ion concentration and conductivity were tested, and the relationship between them was analyzed. The relationship between the formation mechanism of early hydration products of a consolidated body and the change of liquid phase characteristics is studied combined with the hydration exothermic rate curve, field emission scanning electron microscope (SEM), X-ray diffraction analysis (XRD), thermogravimetry-differential thermal analysis (TG–DSC), and other test methods. The results show that lime, gypsum, and amorphous components, which are on the surface of iron tailings powder, dissolve rapidly within a few minutes after solid-liquid mixing. The concentration of each ion in the liquid phase rises sharply, reaching the peak or saturated state successively in 10–30 min, and then decreases rapidly. After 180 min, the decline rate slows down but continues to decline. The liquid conductivity has a very high positive correlation with the total concentration of Ca2+, OH–, and SO42– ions; The first hydration exothermic peak of the consolidated material is concentrated within 0–15 min, which is mainly caused by the wetting and dissolution of soluble components in the consolidated material and the exothermic behavior of lime hydration; The starting and ending time of the second hydration exothermic behavior is 20–180 min, which is mainly caused by the phase change heat generated by the formation of hydration products. Increasing the grinding time significantly prolongs the termination time of the second exothermic behavior and increases its peak value; The phase analysis of hydration products showed that AFt characteristic peak and C–S–H endothermic peak could be seen in the slurry after hydration for 90 min. Research has proved that the amorphous SiO2 and Al2O3 on the surface of superfine iron tailings powder have the characteristics of rapid dissolution in alkaline solutions, and a hydration reaction can occur when lime and gypsum components are encountered. When the solubility product of hydration products is reached, hydration products AFt and C–S–H will be generated. The two hydration products are interspersed and cemented with each other, and the unhydrated iron tailings particles will be consolidated to form a hardened body. Prolonging the grinding time can effectively increase the system’s amorphous SiO2 and Al2O3 content and the proportion of superfine particles in iron tailings, thus improving the slurry hydration rate. While increasing the amount of the hydration product, the filling effect of the micro powder part is further increased, and the strength of the consolidated body is correspondingly improved.
-
圖 6 不同時間固液分離后固相的DSC–TG圖譜. (a)FL150502的DSC圖; (b) FL150504的DSC圖; (c) FL150506的DSC圖; (d) FL150502的TG圖; (e) FL150504的TG圖; (f) FL150506的TG圖
Figure 6. TG–DSC analysis diagram of samples with different times: (a) DSC curve of FL150502; (b) DSC curve of FL150504; (c) DSC curve of FL150506; (d) TG curve of FL150502; (e) TG curve of FL150504; (f) TG curve of FL150506
表 1 原材料化學成分分析結果(質量分數)
Table 1. Analysis of results of the chemical composition of the raw materials
% Chemical composition SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 Loss Total Iron tailings 60.18 8.83 14.27 2.72 2.68 2.56 2.26 1.17 — 94.67 Lime — — — 96.26 — — — — — 96.26 Gypsum 2.16 1.14 0.64 33.69 0.57 0.66 0.72 41.42 18.67 99.67 表 2 無熟料固結材料的基本物理性能
Table 2. Basic physical properties of non-clinker consolidated materials
Number Specific surface
area /( m2?kg–1)d(0.5) / μm Setting time / min Water consumption for
standard consistency / %Compressive strength of paste / MPa Initial Final 1 d 3 d 7 d 14 d 28 d FL150500 313 48.09 225 310 26.4 — 0.89 1.73 2.14 2.89 FL150502 627 16.21 65 98 25.4 2.93 3.78 4.73 5.86 7.23 FL150504 918 10.34 40 63 26.2 7.76 12.66 14.22 16.71 19.18 FL150506 1132 5.71 30 48 27.0 12.64 18.34 21.06 23.49 26.89 www.77susu.com -
參考文獻
[1] Wang H J, Wang Y J, Li W C. Report of Mineral Resources Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2019王海軍, 王伊杰, 李文超. 全國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2019 [2] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11 [3] Liu Q Y, Liu J H, Wang H J, et al. Study on performance control of fine grained tailings paste filling material. Met Mine, 2021(10): 51 doi: 10.19614/j.cnki.jsks.202110008劉倩影, 劉娟紅, 王洪江, 等. 細粒級全尾砂膏體充填材料性能調控研究. 金屬礦山, 2021(10):51 doi: 10.19614/j.cnki.jsks.202110008 [4] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457 [5] Liu J H, Zhou Y C, Wu A X, et al. Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete. Int J Miner Metall Mater, 2019, 26(10): 1329 doi: 10.1007/s12613-019-1811-z [6] Sanish K B, Neithalath N, Santhanam M. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Constr Build Mater, 2013, 49: 288 doi: 10.1016/j.conbuildmat.2013.08.038 [7] Dong B Q, Zhang J C, Wang Y S, et al. Evolutionary trace for early hydration of cement paste using electrical resistivity method. Constr Build Mater, 2016, 119: 16 doi: 10.1016/j.conbuildmat.2016.03.127 [8] Kong X M, Lu Z B, Yan J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes. J Chin Ceram Soc, 2013, 41(7): 981 doi: 10.7521/j.issn.0454-5648.2013.07.16孔祥明, 路振寶, 閆娟, 等. 三乙醇胺對水化過程中水泥漿體液相離子濃度的影響. 硅酸鹽學報, 2013, 41(7):981 doi: 10.7521/j.issn.0454-5648.2013.07.16 [9] Qian R S, Zhang Y S, Zhang Y, et al. Relationships between liquid ion concentration and electrical conductivity during the early hydration of cement–fly ash system. Mater Rev, 2018, 32(12): 2066 doi: 10.11896/j.issn.1005-023X.2018.12.024錢如勝, 張云升, 張宇, 等. 水泥–粉煤灰體系早齡期液相離子濃度與電導率的關系. 材料導報, 2018, 32(12):2066 doi: 10.11896/j.issn.1005-023X.2018.12.024 [10] Liao Y S, Shen Q, Xu P F, et al. Effect of fly ash on the electrical resistivity of cement-based materials during the hydration process. Mater Rep, 2019, 33(8): 1335 doi: 10.11896/cldb.17110298廖宜順, 沈晴, 徐鵬飛, 等. 粉煤灰對水泥基材料水化過程電阻率的影響研究. 材料導報, 2019, 33(8):1335 doi: 10.11896/cldb.17110298 [11] Muazu B S, Wei X S, Wang L. Hydration process and crack tendency of concrete based on resistivity and restrained shrinkage crack. J Wuhan Univ Technol -Mat Sci Edit, 2016, 31(5): 1026 doi: 10.1007/s11595-016-1485-6 [12] Chen W, Brouwers H J H, Shui Z H. Modeling ion concentrations in pore solution of hydrated cement paste. J Wuhan Univ Technol, 2010, 32(11): 1 doi: 10.3963/j.issn.1671-4431.2010.11.001陳偉, Brouwers H J H, 水中和. 水泥漿體液相離子濃度模擬. 武漢理工大學學報, 2010, 32(11):1 doi: 10.3963/j.issn.1671-4431.2010.11.001 [13] He L, Chen Q, Jiang Z W. Hydration based dynamic calculation model for electric conductivity of hardened cement paste. J Build Mater, 2022, 25(1): 1 doi: 10.3969/j.issn.1007-9629.2022.01.001何麗, 陳慶, 蔣正武. 基于水化進程的硬化水泥漿體電導率動態計算模型. 建筑材料學報, 2022, 25(1):1 doi: 10.3969/j.issn.1007-9629.2022.01.001 [14] Yang N R. Non-Traditional Cementitious Materials Chemistry. Wuhan: Wuhan University of Technology Press, 2018楊南如. 非傳統膠凝材料化學. 武漢: 武漢理工大學出版社, 2018 [15] Qian J S, Yu J C, Sun H Q, et al. Formation and function of ettringite in cement hydrates. J Chin Ceram Soc, 2017, 45(11): 1569 doi: 10.14062/j.issn.0454-5648.2017.11.04錢覺時, 余金城, 孫化強, 等. 鈣礬石的形成與作用. 硅酸鹽學報, 2017, 45(11):1569 doi: 10.14062/j.issn.0454-5648.2017.11.04 [16] Li Y, Wu B H, Ni W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system. J Northeast Univ (Nat Sci) , 2020, 41(4): 581 doi: 10.12068/j.issn.1005-3026.2020.04.022李穎, 吳保華, 倪文, 等. 礦渣–鋼渣–石膏體系早期水化反應中的協同作用. 東北大學學報(自然科學版), 2020, 41(4):581 doi: 10.12068/j.issn.1005-3026.2020.04.022 [17] Liu X, Feng P, Shen X Y, et al. Advances in the understanding of cement hydrate—Calcium silicate hydrate(C–S–H). Mater Rep, 2021, 35(9): 9157 doi: 10.11896/cldb.20040204劉新, 馮攀, 沈敘言, 等. 水泥水化產物—水化硅酸鈣(C–S–H)的研究進展. 材料導報, 2021, 35(9):9157 doi: 10.11896/cldb.20040204 [18] Li Y J, Pan H, Li Z J. Ab initio metadynamics simulations on the formation of calcium silicate aqua complexes prior to the nuleation of calcium silicate hydrate. Cem Concr Res, 2022, 156: 106767 doi: 10.1016/j.cemconres.2022.106767 [19] Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963 [20] Wu A X, Jiang G Z, Lan W T, et al. Experimental study on copper slag activity excitation and hydration mechanism analysis. J Central South Univ (Sci Technol) , 2017, 48(9): 2498吳愛祥, 姜關照, 蘭文濤, 等. 銅爐渣活性激發實驗研究及水化機理分析. 中南大學學報(自然科學版), 2017, 48(9):2498 [21] Wang R, Liu K, Wan Q, et al. Effect of cellulose ethers with hydroxyethyl group on early hydration of CSA cement. J Build Mater,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html王茹, 劉科, 萬芹, 等. 含羥乙基纖維素醚對CSA水泥早期水化的影響. 建筑材料學報,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html [22] Pan X Y, Zhang G X, Zhang Y Q, et al. Study on properties of nano-SiO2 blended cement pastes for grouting soil nailing. J Build Mater, 2017, 20(2): 255 doi: 10.3969/j.issn.1007-9629.2017.02.017潘曉燕, 張廣興, 張晏清, 等. 納米SiO2改性水泥土釘注漿體性能的研究. 建筑材料學報, 2017, 20(2):255 doi: 10.3969/j.issn.1007-9629.2017.02.017 [23] Plusquellec G, Geiker M R, Lindg?rd J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem Concr Res, 2017, 96: 13 doi: 10.1016/j.cemconres.2017.03.002 [24] Wang Y, Zhu Y M, Xie R Q, et al. Crystal chemical genes characteristics of albite and prediction of its floatability. Met Mine, 2020(6): 81 doi: 10.19614/j.cnki.jsks.202006012王燕, 朱一民, 謝瑞琦, 等. 鈉長石的晶體化學基因特征及其可浮性預測. 金屬礦山, 2020(6):81 doi: 10.19614/j.cnki.jsks.202006012 [25] Lu X C, Yin L, Zhao L Z, et al. Surface characteristics of general phyllosilicate minerals. J Chin Ceram Soc, 2003, 31(1): 60 doi: 10.3321/j.issn:0454-5648.2003.01.013陸現彩, 尹琳, 趙連澤, 等. 常見層狀硅酸鹽礦物的表面特征. 硅酸鹽學報, 2003, 31(1):60 doi: 10.3321/j.issn:0454-5648.2003.01.013 [26] Chen W Y, Zhou Y Q, Li S, et al. Impact of temperature rising inhibitor on hydration of cement–fly ash cementitious materials and performance of concrete. J Chin Ceram Soc, 2021, 49(8): 1609陳煒一, 周予啟, 李嵩, 等. 水化熱抑制劑對水泥–粉煤灰膠凝材料水化和混凝土性能的影響. 硅酸鹽學報, 2021, 49(8):1609 -