<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面向材料數據的主動回歸學習方法

張函 錢權 武星

張函, 錢權, 武星. 面向材料數據的主動回歸學習方法[J]. 工程科學學報, 2023, 45(7): 1232-1237. doi: 10.13374/j.issn2095-9389.2022.05.03.004
引用本文: 張函, 錢權, 武星. 面向材料數據的主動回歸學習方法[J]. 工程科學學報, 2023, 45(7): 1232-1237. doi: 10.13374/j.issn2095-9389.2022.05.03.004
ZHANG Han, QIAN Quan, WU Xing. Active regression learning method for material data[J]. Chinese Journal of Engineering, 2023, 45(7): 1232-1237. doi: 10.13374/j.issn2095-9389.2022.05.03.004
Citation: ZHANG Han, QIAN Quan, WU Xing. Active regression learning method for material data[J]. Chinese Journal of Engineering, 2023, 45(7): 1232-1237. doi: 10.13374/j.issn2095-9389.2022.05.03.004

面向材料數據的主動回歸學習方法

doi: 10.13374/j.issn2095-9389.2022.05.03.004
基金項目: 國家重點研發計劃資助項目(2022YFB3707800);云南省重大科技專項(202102AB080019-3,202002AB080001-2);之江實驗室科研攻關項目(2021PE0AC02);上海張江國家自主創新示范區專項發展資金重大項目(ZJ2021-ZD-006)
詳細信息
    通訊作者:

    E-mail: xingwu@shu.edu.cn

  • 中圖分類號: TG142.71

Active regression learning method for material data

More Information
  • 摘要: 材料的生產環境和測量條件不同,導致用于機器學習的材料數據的噪聲較大。對材料數據進行標注需要一定的專業知識和專業技能,因此標注成本也相對較高。這兩方面的因素給機器學習應用于材料領域帶來了巨大挑戰。為應對這個挑戰,提出了一個主動回歸學習方法,由離群點檢測模塊、貪婪采樣模塊和最小變化采樣模塊組成。同其他主動學習方法相比,該方法整合了離群點檢測機制,選取高質量樣本的同時有效地排除了噪聲數據的影響,避免了沉沒成本。在公開數據集和非公開數據集上與最新的主動回歸學習方法進行了對比實驗,實驗結果表明本文方法在相同的數據量下訓練的任務模型性能指標相比于其他模型平均提高15%,且只需30%~40%的數據量作為訓練集就可以達到甚至超過使用全部數據訓練任務模型的精度。

     

  • 圖  1  面向材料數據的主動回歸學習數據流示意圖

    Figure  1.  Data flow diagram of active regression learning for material data

    圖  2  四種算法在混凝土坍落度測試數據集上的表現

    Figure  2.  Performance of four algorithms on the concrete slump test dataset

    圖  3  四種算法在負熱膨脹材料數據集上的表現

    Figure  3.  Performance of four algorithms on the negative thermal expansion material dataset

    Algorithm 1
    Input: labeled data set $ {\boldsymbol{D}}_{\mathrm{l}} $; unlabeled data set $ {\boldsymbol{D}}_{\mathrm{u}} $; number of sampling $ K $
    Output: result of sampling $ {\boldsymbol{D}}_{K} $, $ \left|{\boldsymbol{D}}_{K}\right|=K $
    Set $ {D}_{K}=\varnothing $
    For k=1, …, $ K $ do
      Calculate $d_{nm}^x$using (2) where $ \boldsymbol{R}={\boldsymbol{D}}_{\mathrm{u}}-{\boldsymbol{D}}_{K} $ and $ \boldsymbol{S}={\boldsymbol{D}}_{\mathrm{l}}\cup {\boldsymbol{D}}_{K} $
      Calculate $ {d}_{n}^{k} $ using (3)
      Choose $ x=\mathrm{arg ma}{\mathrm{x}}_{x}{d}_{n}^{x} $
      Reset $ {\boldsymbol{D}}_{K}={\boldsymbol{D}}_{K}\cup \left\{x\right\} $
    End
    下載: 導出CSV

    表  1  在混凝土坍落度測試數據集和負膨脹材料數據集上的消融實驗結果

    Table  1.   Ablation experimental results on the concrete slump test dataset and the negative thermal expansion material dataset

    Method$\bar{ {R}^{2} }$ for concrete slump test dataset$\bar{ {R}^{2} }$ for negative coefficient of thermal expansion dataset
    Without outlier detection module0.39?2
    Without greedy sampling module0.43?1.42
    Without minimum change sampling module0.46?1.83
    Complete method0.52?0.97
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cao X Y, Yao J, Xu Z B, et al. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans Geosci Remote Sens, 2020, 58(7): 4604 doi: 10.1109/TGRS.2020.2964627
    [2] Tsymbalov E, Panov M, Shapeev A. Dropout-based active learning for regression // International Conference on Analysis of Images, Social Networks and Texts. Moscow, 2018: 247
    [3] Kumar P, Gupta A. Active learning query strategies for classification, regression, and clustering: A survey. J Comput Sci Technol, 2020, 35(4): 913 doi: 10.1007/s11390-020-9487-4
    [4] Guo J N, Shi H C, Kang Y Y, et al. Semi-supervised active learning for semi-supervised models: Exploit adversarial examples with graph-based virtual labels // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 2896
    [5] Sener O, Savarese S. Active learning for convolutional neural networks: A core-set approach // International Conference on Learning Representations. Vancouver, 2018: 38
    [6] Sinha S, Ebrahimi S, Darrell T. Variational adversarial active learning // Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 5971
    [7] Bengar J Z, van de Weijer J, Twardowski B, et al. Reducing label effort: Self-supervised meets active learning // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 1631
    [8] Choi J, Yi K M, Kim J, et al. Vab-al: Incorporating class imbalance and difficulty with variational bayes for active learning // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, 2021: 6745
    [9] Barz B, K?ding C, Denzler J. Information-theoretic active learning for content-based image retrieval // German Conference on Pattern Recognition. Stuttgart, 2018: 650
    [10] Deng Y, Chen K W, Shen Y L, et al. Adversarial active learning for sequences labeling and generation // Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, 2018: 4012
    [11] Bengar J Z, Gonzalez-Garcia A, Villalonga G, et al. Temporal coherence for active learning in videos // Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul, 2019: 914
    [12] Kusne A G, Yu H S, Wu C M, et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat Commun, 2020, 11: 5966 doi: 10.1038/s41467-020-19597-w
    [13] Min K, Cho E. Accelerated discovery of novel inorganic materials with desired properties using active learning. J Phys Chem C, 2020, 124(27): 14759 doi: 10.1021/acs.jpcc.0c00545
    [14] Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. Npj Comput Mater, 2019, 5: 21 doi: 10.1038/s41524-019-0153-8
    [15] Bassman L, Rajak P, Kalia R K, et al. Active learning for accelerated design of layered materials. Npj Comput Mater, 2018, 4: 74 doi: 10.1038/s41524-018-0129-0
    [16] Juneja R, Yumnam G, Satsangi S, et al. Coupling the high-throughput property map to machine learning for predicting lattice thermal conductivity. Chem Mater, 2019, 31(14): 5145 doi: 10.1021/acs.chemmater.9b01046
    [17] Loftis C, Yuan K P, Zhao Y, et al. Lattice thermal conductivity prediction using symbolic regression and machine learning. J Phys Chem A, 2021, 125(1): 435 doi: 10.1021/acs.jpca.0c08103
    [18] Le T T. Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method. J Compos Mater, 2020, 55(6): 787
    [19] ?olak A B, Y?ld?z O, Bayrak M, et al. Experimental study for predicting the specific heat of water based Cu–Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int J Energy Res, 2020, 44(9): 7198 doi: 10.1002/er.5417
    [20] Assad M E H, Mahariq I, Ghandour R, et al. Utilization of machine learning methods in modeling specific heat capacity of nanofluids. Comput Mater Continua, 2022(1): 361
    [21] Wu D R, Lin C T, Huang J. Active learning for regression using greedy sampling. Inf Sci, 2019, 474: 90 doi: 10.1016/j.ins.2018.09.060
    [22] Liang E J, Sun Q, Yuan H L, et al. Negative thermal expansion: Mechanisms and materials. Front Phys, 2021, 16(5): 53302 doi: 10.1007/s11467-021-1070-0
    [23] Mehr A D, Nourani V, Khosrowshahi V K, et al. A hybrid support vector regression–firefly model for monthly rainfall forecasting. Int J Environ Sci Technol, 2019, 16(1): 335 doi: 10.1007/s13762-018-1674-2
    [24] Wu D R. Pool-based sequential active learning for regression. IEEE Trans Neural Netw Learn Syst, 2019, 30(5): 1348 doi: 10.1109/TNNLS.2018.2868649
    [25] Onyutha C. A hydrological model skill score and revised R-squared. Hydrol Res, 2022, 53(1): 51 doi: 10.2166/nh.2021.071
  • 加載中
圖(3) / 表(2)
計量
  • 文章訪問數:  440
  • HTML全文瀏覽量:  164
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-03
  • 網絡出版日期:  2022-09-19
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回