[1] |
Jian Y, Kai Z, Division W G M P, et al. Progress in the technological development of oxide metallurgy for manufacturing steel plates with excellent HAZ toughness. Baosteel Tech Res, 2008, 2(4): 43
|
[2] |
Zhang L F. Discussion on the index of steel cleanliness. Steelmaking, 2019, 35(3): 1張立峰. 關于鋼潔凈度指數的討論. 煉鋼, 2019, 35(3):1
|
[3] |
Wang X M, Shu W, Zheng C C, et al. Effects of TixO–MnS complex inclusions on the microstructure phase transformation of heat affected zone in the welding of low carbon microalloyed steels. J Univ Sci Technol Beijing, 2011, 33(8): 958王學敏, 舒瑋, 鄭超超, 等. 低碳微合金鋼中TixO–MnS型復合夾雜對焊接熱影響區微觀組織相變的影響. 北京科技大學學報, 2011, 33(8):958
|
[4] |
Sun L G, Lei M, Zhang X, et al. In-situ research on microstructure refining effect of Mg treatment for shipbuilding steel at high temperature. Iron Steel, 2020, 55(5): 94 doi: 10.13228/j.boyuan.issn0449-749x.20190392孫立根, 雷鳴, 張鑫, 等. 鎂處理對船體鋼組織細化作用的高溫原位分析. 鋼鐵, 2020, 55(5):94 doi: 10.13228/j.boyuan.issn0449-749x.20190392
|
[5] |
Xu L Y, Yang J, Wang R Z. Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding. Chin J Eng, 2020, 42(Suppl 1): 9徐龍云, 楊健, 王睿之. Mg脫氧夾雜物對大線能量焊接HAZ組織的影響. 工程科學學報, 2020, 42(增刊 1):9
|
[6] |
Liu Y, Li G Q, Wan X L, et al. Toughness improvement by Zr addition in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. Ironmak Steelmak, 2019, 46(2): 113 doi: 10.1080/03019233.2017.1353763
|
[7] |
Bizyukov P V, Giese S R. Effects of Zr, Ti, and Al additions on nonmetallic inclusions and impact toughness of cast low-alloy steel. J Mater Eng and Perform, 2017, 26(4): 1878 doi: 10.1007/s11665-017-2583-0
|
[8] |
Li X B, Min Y, Liu C J, et al. Study on the formation of intragranular acicular ferrite in a Zr–Mg–Al deoxidized low carbon steel. Steel Res Int, 2016, 87(5): 622 doi: 10.1002/srin.201500167
|
[9] |
Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
|
[10] |
Li X B, Min Y, Yu Z, et al. Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. J Iron Steel Res Int, 2016, 23(5): 415 doi: 10.1016/S1006-706X(16)30066-8
|
[11] |
Pu J, Yu S F, Li Y Y. Effects of Zr–Ti on the microstructure and properties of flux aided backing submerged arc weld metals. J Alloys Compd, 2017, 692: 351 doi: 10.1016/j.jallcom.2016.09.045
|
[12] |
Lou H, Wang C, Wang B, et al. Inclusion evolution behavior of Ti–Mg oxide metallurgy steel and its effect on a hgh heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
|
[13] |
Yao H, Ren Q, Zhang L F. Review on the control of the acicular ferrite in high strength low alloy steels. Steelmaking, 2022, 38(2): 1 doi: 10.3969/j.issn.1002-1043.2022.2.lg202202002姚浩, 任強, 張立峰. 低合金高強鋼中針狀鐵素體控制的綜述. 煉鋼, 2022, 38(2):1 doi: 10.3969/j.issn.1002-1043.2022.2.lg202202002
|
[14] |
Yao H, Zhang L F, Ren Q, et al. Effect of cooling rates on transformation of acicular ferrite in a Ti–Zr treated steel. Iron &Steel, 2021, 56(11): 96姚浩, 張立峰, 任強, 等. 冷卻速率對Ti–Zr處理鋼針狀鐵素體轉變的影響. 鋼鐵, 2021, 56(11):96
|
[15] |
Song Z H, Song H Y, Liu H T. Effect of cooling route on microstructure and mechanical properties of twin-roll casting low carbon steels with an application of oxide metallurgy technology. Mater Sci Eng A, 2021, 800: 140282 doi: 10.1016/j.msea.2020.140282
|
[16] |
Wang X, Chen Y, Wang C, et al. Effect of heat input on microstructure and impact toughness of coarse-grained heat-affected zone in Al–Ca and Ti–Ca killed steels. Steel Res Int, 2020, 91(9): 2000133 doi: 10.1002/srin.202000133
|
[17] |
Zhao H T, Palmiere E J. Effect of austenite grain size on acicular ferrite transformation in a HSLA steel. Mater Charact, 2018, 145: 479 doi: 10.1016/j.matchar.2018.09.013
|
[18] |
Thewlis G. Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels. Mater Sci Technol, 2006, 22(2): 153 doi: 10.1179/026708306X81432
|
[19] |
Zhang D, Shintaku Y, Suzuki S, et al. In situ observation of phase transformation in low-carbon, boron-treated steels. Metall Mater Trans A, 2012, 43(2): 447 doi: 10.1007/s11661-011-0892-8
|
[20] |
Chai F, Yang C F, Su H, et al. Effect of Zr addition to Ti-killed steel on inclusion formation and microstructural evolution in welding induced coarse-grained heat affected zone. Acta Metall Sin, 2008, 21(3): 220 doi: 10.1016/S1006-7191(08)60042-3
|
[21] |
Wang X, Wang C, Kang J, et al. An in situ microscopy study on nucleation and growth of acicular ferrite in Ti–Ca–Zr deoxidized low-carbon steel. Mater Charact, 2020, 165: 110381 doi: 10.1016/j.matchar.2020.110381
|
[22] |
Lee J L. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta Metall Mater, 1994, 42(10): 3291 doi: 10.1016/0956-7151(94)90461-8
|
[23] |
Thewlis G. Transformation kinetics of ferrous weld metals. Mater Sci Technol, 1994, 10(2): 110 doi: 10.1179/mst.1994.10.2.110
|
[24] |
Yao H, Ren Q, Yang W, et al. In situ observation and prediction of the transformation of acicular ferrites in Ti-containing HLSA steel. Metall Mater Trans B, 2022, 53(3): 1827 doi: 10.1007/s11663-022-02492-8
|
[25] |
Yao H, Zhang L F, Ren Q. Influence of inclusions on the nucleation of acicular ferrites in a Ti–Zr–bearing steel. Steel Res Int, 2022, 93(2): 2100468 doi: 10.1002/srin.202100468
|
[26] |
Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int, 2000, 40(12): 1260 doi: 10.2355/isijinternational.40.1260
|