<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

奧氏體化溫度對Ti–Zr處理鋼中針狀鐵素體轉變的影響

姚浩 劉承軍 張立峰

姚浩, 劉承軍, 張立峰. 奧氏體化溫度對Ti–Zr處理鋼中針狀鐵素體轉變的影響[J]. 工程科學學報, 2023, 45(6): 907-914. doi: 10.13374/j.issn2095-9389.2022.05.03.003
引用本文: 姚浩, 劉承軍, 張立峰. 奧氏體化溫度對Ti–Zr處理鋼中針狀鐵素體轉變的影響[J]. 工程科學學報, 2023, 45(6): 907-914. doi: 10.13374/j.issn2095-9389.2022.05.03.003
YAO Hao, LIU Cheng-jun, ZHANG Li-feng. Effect of austenite grain size on the acicular ferrite transformation in Ti–Zr treated steel[J]. Chinese Journal of Engineering, 2023, 45(6): 907-914. doi: 10.13374/j.issn2095-9389.2022.05.03.003
Citation: YAO Hao, LIU Cheng-jun, ZHANG Li-feng. Effect of austenite grain size on the acicular ferrite transformation in Ti–Zr treated steel[J]. Chinese Journal of Engineering, 2023, 45(6): 907-914. doi: 10.13374/j.issn2095-9389.2022.05.03.003

奧氏體化溫度對Ti–Zr處理鋼中針狀鐵素體轉變的影響

doi: 10.13374/j.issn2095-9389.2022.05.03.003
基金項目: 河北省省級科技計劃(20311004D, 20591001D)
詳細信息
    通訊作者:

    劉承軍, E-mail: liucj@smm.neu.edu.cn

    張立峰,E-mail: zhanglifeng@ncut.edu.cn

  • 中圖分類號: TG142.1

Effect of austenite grain size on the acicular ferrite transformation in Ti–Zr treated steel

More Information
  • 摘要: Ti、Zr的復合氧化物可以有效誘導針狀鐵素體形核,從而細化晶粒。為了研究Ti–Zr處理鋼中針狀鐵素體轉變機理,使用25 kg真空感應爐中熔煉試驗所需鋼種,向低合金鋼中添加了質量分數為0.038%鈦和0.008%鋯。利用高溫激光共聚焦顯微鏡原位觀察了奧氏體化溫度對針狀鐵素體轉變行為的變化,使用掃描電鏡觀察了Ti–Zr處理鋼種的夾雜物成分和針狀鐵素體在夾雜物表面形核,使用光學顯微鏡觀察不同奧氏體化溫度下的微觀組織變化差異。結果表明,隨著奧氏體化溫度從1250 ℃增加至1400 ℃,奧氏體晶粒尺寸從125.6 μm 增加至279.8 μm,針狀鐵素體開始轉變溫度和側板條鐵素體開始轉變溫度先增加,在1350 ℃條件下達到最大值,后又降低,針狀鐵素體的體積分數由39.6%增加至83.6%;Ti–Zr處理鋼中核心為Zr–Ti–O,外部為Al–Ti–Zr–O的氧化物為核心表面析出MnS的復合氧化物主要集中在1.5~3 μm,可以有效促進針狀鐵素體形核,貧Mn區和夾雜物與鐵素體之間的良好晶格關系為該型夾雜物能夠促進針狀鐵素體形核機理。奧氏體晶粒尺寸的增加導致多邊形鐵素形核位點的減少和針狀鐵素體的形核空間的增加,鈦鋯復合處理形成大量的有效誘發針狀鐵素體形核的夾雜物,這共同導致了針狀鐵素體體積分數增加。

     

  • 圖  1  實驗過程示意圖

    Figure  1.  Schematic of the experimental process

    圖  2  共聚焦顯微鏡原位觀察奧氏體晶粒長大過程. (a) 600 ℃; (b) 1000 ℃; (c) 1350 ℃; (d) 1350 ℃保溫300 s

    Figure  2.  In-situ observation of austenite grain growth by confocal microscope: (a) 600 ℃; (b) 1000 ℃; (c) 1350 ℃; (d) 1350 ℃ holding for 300 s

    圖  3  不同奧氏體化溫度處理后的光學顯微圖. (a) 1400 ℃; (b) 1350 ℃; (c) 1300 ℃; (d) 1250 ℃

    Figure  3.  Optical micrographs after different austenitizing temperatures: (a) 1400 ℃; (b) 1350 ℃; (c) 1300 ℃; (d) 1250 ℃

    圖  4  不同溫度下的奧氏體晶粒平均尺寸

    Figure  4.  Austenite grain size at different temperatures

    圖  5  原位觀察不同奧氏體化溫度下的鐵素體轉變. (a~b) 1400 ℃; (c~d) 1350 ℃; (e~f) 1300 ℃; (g~h) 1250 ℃

    Figure  5.  In-situ observation of ferrite transformation at different austenitizing temperatures: (a–b) 1400 ℃; (c–d) 1350 ℃; (e–f) 1300 ℃; (g–h) 1250 ℃

    圖  6  不同奧氏體化溫度下的鐵素體轉變溫度

    Figure  6.  Ferrite transformation temperature at different austenitizing temperatures

    圖  7  不同奧氏體化溫度下的微觀組織圖像. (a) 1400 ℃; (b) 1350 ℃; (c) 1300 ℃; (d) 1250 ℃

    Figure  7.  Microstructure at different austenite temperatures: (a) 1400 ℃; (b) 1350 ℃; (c) 1300 ℃; (d) 1250 ℃

    圖  8  不同奧氏體化溫度下不同鐵素體的體積分數

    Figure  8.  Volume fraction of different ferrites at different austenitizing temperatures

    圖  9  夾雜物成分和數量隨尺寸的變化. (a)夾雜物質量分數; (b)夾雜物數量分數

    Figure  9.  Variation in composition and number of inclusions with inclusions diameter: (a) mass fraction of inclusions; (b) number fraction of inclusions

    圖  10  不同奧氏體化溫度下夾雜物數密度和氧化物類型夾雜物的平均直徑

    Figure  10.  Number density of inclusions and average diameter of oxides inclusions at different austenitizing temperatures

    圖  11  針狀鐵素體在夾雜物表面形核過程. (a) 1400 ℃; (b) 1350 ℃; (c) 1300 ℃; (d) 1250 ℃

    Figure  11.  Acicular ferrite nucleated on the surface of inclusions: (a) 1400 ℃; (b) 1350 ℃; (c) 1300 ℃; (d) 1250 ℃

    圖  12  不同奧氏體晶粒尺寸下的針狀鐵素體形核能力

    Figure  12.  Nucleation potential of acicular ferrites at different austenite grain sizes

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jian Y, Kai Z, Division W G M P, et al. Progress in the technological development of oxide metallurgy for manufacturing steel plates with excellent HAZ toughness. Baosteel Tech Res, 2008, 2(4): 43
    [2] Zhang L F. Discussion on the index of steel cleanliness. Steelmaking, 2019, 35(3): 1

    張立峰. 關于鋼潔凈度指數的討論. 煉鋼, 2019, 35(3):1
    [3] Wang X M, Shu W, Zheng C C, et al. Effects of TixO–MnS complex inclusions on the microstructure phase transformation of heat affected zone in the welding of low carbon microalloyed steels. J Univ Sci Technol Beijing, 2011, 33(8): 958

    王學敏, 舒瑋, 鄭超超, 等. 低碳微合金鋼中TixO–MnS型復合夾雜對焊接熱影響區微觀組織相變的影響. 北京科技大學學報, 2011, 33(8):958
    [4] Sun L G, Lei M, Zhang X, et al. In-situ research on microstructure refining effect of Mg treatment for shipbuilding steel at high temperature. Iron Steel, 2020, 55(5): 94 doi: 10.13228/j.boyuan.issn0449-749x.20190392

    孫立根, 雷鳴, 張鑫, 等. 鎂處理對船體鋼組織細化作用的高溫原位分析. 鋼鐵, 2020, 55(5):94 doi: 10.13228/j.boyuan.issn0449-749x.20190392
    [5] Xu L Y, Yang J, Wang R Z. Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding. Chin J Eng, 2020, 42(Suppl 1): 9

    徐龍云, 楊健, 王睿之. Mg脫氧夾雜物對大線能量焊接HAZ組織的影響. 工程科學學報, 2020, 42(增刊 1):9
    [6] Liu Y, Li G Q, Wan X L, et al. Toughness improvement by Zr addition in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. Ironmak Steelmak, 2019, 46(2): 113 doi: 10.1080/03019233.2017.1353763
    [7] Bizyukov P V, Giese S R. Effects of Zr, Ti, and Al additions on nonmetallic inclusions and impact toughness of cast low-alloy steel. J Mater Eng and Perform, 2017, 26(4): 1878 doi: 10.1007/s11665-017-2583-0
    [8] Li X B, Min Y, Liu C J, et al. Study on the formation of intragranular acicular ferrite in a Zr–Mg–Al deoxidized low carbon steel. Steel Res Int, 2016, 87(5): 622 doi: 10.1002/srin.201500167
    [9] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
    [10] Li X B, Min Y, Yu Z, et al. Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. J Iron Steel Res Int, 2016, 23(5): 415 doi: 10.1016/S1006-706X(16)30066-8
    [11] Pu J, Yu S F, Li Y Y. Effects of Zr–Ti on the microstructure and properties of flux aided backing submerged arc weld metals. J Alloys Compd, 2017, 692: 351 doi: 10.1016/j.jallcom.2016.09.045
    [12] Lou H, Wang C, Wang B, et al. Inclusion evolution behavior of Ti–Mg oxide metallurgy steel and its effect on a hgh heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
    [13] Yao H, Ren Q, Zhang L F. Review on the control of the acicular ferrite in high strength low alloy steels. Steelmaking, 2022, 38(2): 1 doi: 10.3969/j.issn.1002-1043.2022.2.lg202202002

    姚浩, 任強, 張立峰. 低合金高強鋼中針狀鐵素體控制的綜述. 煉鋼, 2022, 38(2):1 doi: 10.3969/j.issn.1002-1043.2022.2.lg202202002
    [14] Yao H, Zhang L F, Ren Q, et al. Effect of cooling rates on transformation of acicular ferrite in a Ti–Zr treated steel. Iron &Steel, 2021, 56(11): 96

    姚浩, 張立峰, 任強, 等. 冷卻速率對Ti–Zr處理鋼針狀鐵素體轉變的影響. 鋼鐵, 2021, 56(11):96
    [15] Song Z H, Song H Y, Liu H T. Effect of cooling route on microstructure and mechanical properties of twin-roll casting low carbon steels with an application of oxide metallurgy technology. Mater Sci Eng A, 2021, 800: 140282 doi: 10.1016/j.msea.2020.140282
    [16] Wang X, Chen Y, Wang C, et al. Effect of heat input on microstructure and impact toughness of coarse-grained heat-affected zone in Al–Ca and Ti–Ca killed steels. Steel Res Int, 2020, 91(9): 2000133 doi: 10.1002/srin.202000133
    [17] Zhao H T, Palmiere E J. Effect of austenite grain size on acicular ferrite transformation in a HSLA steel. Mater Charact, 2018, 145: 479 doi: 10.1016/j.matchar.2018.09.013
    [18] Thewlis G. Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels. Mater Sci Technol, 2006, 22(2): 153 doi: 10.1179/026708306X81432
    [19] Zhang D, Shintaku Y, Suzuki S, et al. In situ observation of phase transformation in low-carbon, boron-treated steels. Metall Mater Trans A, 2012, 43(2): 447 doi: 10.1007/s11661-011-0892-8
    [20] Chai F, Yang C F, Su H, et al. Effect of Zr addition to Ti-killed steel on inclusion formation and microstructural evolution in welding induced coarse-grained heat affected zone. Acta Metall Sin, 2008, 21(3): 220 doi: 10.1016/S1006-7191(08)60042-3
    [21] Wang X, Wang C, Kang J, et al. An in situ microscopy study on nucleation and growth of acicular ferrite in Ti–Ca–Zr deoxidized low-carbon steel. Mater Charact, 2020, 165: 110381 doi: 10.1016/j.matchar.2020.110381
    [22] Lee J L. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta Metall Mater, 1994, 42(10): 3291 doi: 10.1016/0956-7151(94)90461-8
    [23] Thewlis G. Transformation kinetics of ferrous weld metals. Mater Sci Technol, 1994, 10(2): 110 doi: 10.1179/mst.1994.10.2.110
    [24] Yao H, Ren Q, Yang W, et al. In situ observation and prediction of the transformation of acicular ferrites in Ti-containing HLSA steel. Metall Mater Trans B, 2022, 53(3): 1827 doi: 10.1007/s11663-022-02492-8
    [25] Yao H, Zhang L F, Ren Q. Influence of inclusions on the nucleation of acicular ferrites in a Ti–Zr–bearing steel. Steel Res Int, 2022, 93(2): 2100468 doi: 10.1002/srin.202100468
    [26] Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int, 2000, 40(12): 1260 doi: 10.2355/isijinternational.40.1260
  • 加載中
圖(12)
計量
  • 文章訪問數:  450
  • HTML全文瀏覽量:  200
  • PDF下載量:  87
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-05-03
  • 網絡出版日期:  2022-06-14
  • 刊出日期:  2023-05-31

目錄

    /

    返回文章
    返回