<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

碳化硅納米線陣列基一體化光電陽極用于高效裂解水制氫

周林林 楊濤 王恩會 周國治 侯新梅

周林林, 楊濤, 王恩會, 周國治, 侯新梅. 碳化硅納米線陣列基一體化光電陽極用于高效裂解水制氫[J]. 工程科學學報, 2023, 45(7): 1149-1155. doi: 10.13374/j.issn2095-9389.2022.04.29.003
引用本文: 周林林, 楊濤, 王恩會, 周國治, 侯新梅. 碳化硅納米線陣列基一體化光電陽極用于高效裂解水制氫[J]. 工程科學學報, 2023, 45(7): 1149-1155. doi: 10.13374/j.issn2095-9389.2022.04.29.003
ZHOU Lin-lin, YANG Tao, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Integrated photoanode based on silicon carbide nanowire arrays for efficient water splitting[J]. Chinese Journal of Engineering, 2023, 45(7): 1149-1155. doi: 10.13374/j.issn2095-9389.2022.04.29.003
Citation: ZHOU Lin-lin, YANG Tao, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Integrated photoanode based on silicon carbide nanowire arrays for efficient water splitting[J]. Chinese Journal of Engineering, 2023, 45(7): 1149-1155. doi: 10.13374/j.issn2095-9389.2022.04.29.003

碳化硅納米線陣列基一體化光電陽極用于高效裂解水制氫

doi: 10.13374/j.issn2095-9389.2022.04.29.003
基金項目: 國家杰出青年基金資助項目(52025041);國家自然科學基金資助項目(51902020);中央高校基本科研業務費資助項目(FRF-IDRY-21-028)
詳細信息
    通訊作者:

    E-mail:yangtaoustb@ustb.edu.cn

  • 中圖分類號: TK6

Integrated photoanode based on silicon carbide nanowire arrays for efficient water splitting

More Information
  • 摘要: 近年來,光電催化裂解水制氫已經發展成為獲取氫能最重要的途徑之一。然而,半導體材料固有的較低的光吸收效率和較高的載流子復合率成為限制其發展的主要障礙。以N摻雜4H-SiC單晶片為原料,通過陽極氧化法制備了N摻雜4H-SiC納米線陣列基一體化光電陽極,聚焦于優化陽極析氧反應條件,在光照和外加電場的共同作用下成功實現了高效裂解水制氫。相比于塊體,碳化硅納米線陣列基一體化光電陽極的裂解水制氫性能表現出了顯著的提升。以Ag/AgCl電極為參比電極,開啟電壓從1.224 V降低至?0.021 V,1.4 V電壓下的電流密度從2.64 mA?cm?2提升至3.61 mA?cm?2。通過構建具有納米結構的半導體光電陽極,可以有效提高其光吸收能力并優化其電荷轉移路徑,從而顯著提升光電催化裂解水制氫的效率。

     

  • 圖  1  碳化硅納米線陣列基一體化光電陽極的制備流程. (a) 塊體; (b) 去除帽層后的塊體; (c) 納米線陣列

    Figure  1.  Preparation of 4H-SiC nanowire arrays (NWAs)-based integrated photoanode: (a) bulk; (b) bulk after removing the cap layer; (c) NWAs

    圖  2  N摻雜4H-SiC塊體和納米線陣列的微觀形貌. (a) 塊體; (b) 納米線陣列的俯視圖; (c) 納米線陣列的側視圖

    Figure  2.  Morphologies of the 4H-SiC bulk and NWAs: (a) bulk; (b) top view of NWAs; (c) the cross-sectional view of NWAs

    圖  3  樣品的物相分析. (a) XRD圖譜; (b) TEM照片; (c) 高分辨的TEM照片

    Figure  3.  Phase analysis of samples: (a) XRD spectrum; (b) typical TEM image; (c)high resolution TEM (HRTEM) image

    圖  4  碳化硅的光電催化裂解水性能測試. (a) 光電催化裂解水的電解池示意圖; (b) 碳化硅塊體和納米線陣列基一體化光電陽極在黑暗和模擬太陽光照下的電流密度曲線 (LSV); (c) 碳化硅納米線陣列基一體化光電陽極的瞬時光響應曲線; (d) 碳化硅塊體和納米線陣列基一體化光電陽極在黑暗和模擬太陽光照下的電化學阻抗譜 (EIS)

    Figure  4.  Performance tests of N doped 4H-SiC: (a) schematic of PEC water splitting using N doped 4H-SiC NWAs; (b) linear sweep voltammetry (LSV) curves of N doped 4H-SiC bulk and NWAs photoanodes in dark and under illumination; (c) transient photo-response curves of N doped 4H-SiC NWAs; (d) electrochemical impedance spectroscopies (EIS) of N doped 4H-SiC bulk and NWAs photoanodes in dark and under illumination

    Rs represents series resistance, Rct represents charge-transfer resistance, CPE represents space-charge capacitance.

    圖  5  SiC光陽極的光電催化裂解水機理圖. (a) 碳化硅的能帶結構; (b) 碳化硅塊體和納米線陣列的紫外可見吸收光譜; (c) 碳化硅塊體光電陽極的光傳播路徑; (d) 碳化硅納米線陣列基光電陽極的光傳播路徑

    Figure  5.  Mechanism diagram of the PEC process of the SiC photoanode: (a) band structure of N doped 4H-SiC; (b) UV–Vis absorption spectrum of N doped 4H-SiC bulk and NWAs; (c) paths of light in N doped 4H-SiC bulk; (d) paths of light in N doped 4H-SiC NWAs

    ENHE represents normal hydrogen electrode potential, Eg represents the band gap.

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: Review and recommendation. Int J Hydrog Energy, 2019, 44(29): 15072 doi: 10.1016/j.ijhydene.2019.04.068
    [2] Li X L, Wang Z L, Wang L Z. Metal-organic framework‐based materials for solar water splitting. Small Sci, 2021, 1(5): 2000074 doi: 10.1002/smsc.202000074
    [3] Schneider S, Bajohr S, Graf F, et al. Verfahrensübersicht zur erzeugung von wasserstoff durch erdgas‐pyrolyse. Chemie Ingenieur Tech, 2020, 92(8): 1023 doi: 10.1002/cite.202000021
    [4] Midilli A, Kucuk H, Topal M E, et al. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. Int J Hydrog Energy, 2021, 46(50): 25385 doi: 10.1016/j.ijhydene.2021.05.088
    [5] Tiwari A, Pandey A. Cyanobacterial hydrogen production – A step towards clean environment. Int J Hydrog Energy, 2012, 37(1): 139 doi: 10.1016/j.ijhydene.2011.09.100
    [6] Chang Y H, Lin C T, Chen T Y, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater, 2013, 25: 756 doi: 10.1002/adma.201202920
    [7] Shi Y, Yang A F, Cao C S, et al. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord Chem Rev, 2019, 390(5): 50
    [8] Cho S, Jang J W, Lee K H, et al. Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater, 2014, 2(1): 010703 doi: 10.1063/1.4861798
    [9] Sun D T, Fan W Q, Wang F F, et al. Promoting photoelectrochemical hydrogen production performance by fabrication of Co1?XS decorating BiVO4 photoanode. Int J Hydrog Energy, 2022, 47(2): 940 doi: 10.1016/j.ijhydene.2021.10.075
    [10] Li B Y, Jian J X, Chen J B, et al. Nanoporous 6H-SiC photoanodes with a conformal coating of Ni-FeOOH nanorods for zero-onset-potential water splitting. ACS Appl Mater Interfaces, 2020, 12(6): 7038 doi: 10.1021/acsami.9b17170
    [11] Xu S, Jiang F L, Gao F M, et al. Single-crystal integrated photoanodes based on 4H-SiC nanohole arrays for boosting photoelectrochemical water splitting activity. ACS Appl Mater Interfaces, 2020, 12(18): 20469 doi: 10.1021/acsami.0c02893
    [12] Jian J X, Sun J W. A review of recent progress on silicon carbide for photoelectrochemical water splitting. Sol RRL, 2020, 4(7): 2000111 doi: 10.1002/solr.202000111
    [13] Lee M G, Park J S, Jang H W. Solution-processed metal oxide thin film nanostructures for water splitting photoelectrodes: A review. J Korean Ceram Soc, 2018, 55(3): 185 doi: 10.4191/kcers.2018.55.3.08
    [14] Zhang H, Zong R L, Zhu Y F. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C, 2009, 113(11): 4605 doi: 10.1021/jp810748u
    [15] Zhao L F, Chen S L, Wang L, et al. Large-scale fabrication of free-standing and transparent SiC nanohole array with tailored structures. Ceram Int, 2018, 44(6): 7280 doi: 10.1016/j.ceramint.2017.12.196
    [16] Yang T, Chen S L, Li X X, et al. High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv Funct Mater, 2019, 29(11): 1806250 doi: 10.1002/adfm.201806250
    [17] Li W J, Liu Q, Chen S L, et al. Single-crystalline integrated 4H-SiC nanochannel array electrode: Toward high-performance capacitive energy storage for robust wide-temperature operation. Mater Horiz, 2018, 5(5): 883 doi: 10.1039/C8MH00474A
    [18] Li W J, Liu Q, Fang Z, et al. All‐solid‐state on‐chip supercapacitors based on free‐standing 4H‐SiC nanowire arrays. Adv Energy Mater, 2019, 9(17): 1900073 doi: 10.1002/aenm.201900073
    [19] Hou J G, Sun Y Q, Wu Y Z, et al. Promoting active sites in core-shell nanowire array as Mott-Schottky electrocatalysts for efficient and stable overall water splitting. Adv Funct Mater, 2018, 28(4): 1704447 doi: 10.1002/adfm.201704447
    [20] Wang K H, Li L C, Shellaiah M, et al. Structural and photophysical properties of methylammonium lead tribromide (MAPbBr3) single crystals. Sci Rep, 2017, 7: 13643 doi: 10.1038/s41598-017-13571-1
    [21] Zhou L L, Zhu L P, Yang T, et al. Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nanomicro Lett, 2021, 14(1): 30
    [22] Zhou L L, Yang T, Zhu L P, et al. Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83: 105826 doi: 10.1016/j.nanoen.2021.105826
    [23] Chen C M, Chen S L, Shang M H, et al. Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. J Mater Chem C, 2016, 4(23): 5195 doi: 10.1039/C6TC00450D
    [24] Jian J X, Shi Y C, Ekeroth S, et al. A nanostructured NiO/cubic SiC p-n heterojunction photoanode for enhanced solar water splitting. J Mater Chem A, 2019, 7(9): 4721 doi: 10.1039/C9TA00020H
    [25] Ren X, Sangle A, Zhang S Y, et al. Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. J Mater Chem A, 2016, 4(26): 10203 doi: 10.1039/C6TA02788A
    [26] Jiang C R, Moniz S J A, Wang A Q, et al. Photoelectrochemical devices for solar water splitting - materials and challenges. Chem Soc Rev, 2017, 46(15): 4645 doi: 10.1039/C6CS00306K
  • 加載中
圖(5)
計量
  • 文章訪問數:  357
  • HTML全文瀏覽量:  159
  • PDF下載量:  64
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-29
  • 網絡出版日期:  2022-08-12
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回