<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

O—正丁基—N—異丁基硫氨酯在黃銅礦表面的吸附熱力學和動力學

陳佳琪 曹飛 游佳琪 余盛祿 盧鼎新 孫德四 徐建平

陳佳琪, 曹飛, 游佳琪, 余盛祿, 盧鼎新, 孫德四, 徐建平. O—正丁基—N—異丁基硫氨酯在黃銅礦表面的吸附熱力學和動力學[J]. 工程科學學報, 2023, 45(8): 1264-1271. doi: 10.13374/j.issn2095-9389.2022.04.28.001
引用本文: 陳佳琪, 曹飛, 游佳琪, 余盛祿, 盧鼎新, 孫德四, 徐建平. O—正丁基—N—異丁基硫氨酯在黃銅礦表面的吸附熱力學和動力學[J]. 工程科學學報, 2023, 45(8): 1264-1271. doi: 10.13374/j.issn2095-9389.2022.04.28.001
CHEN Jia-qi, CAO Fei, YOU Jia-qi, YU Sheng-lu, LU Ding-xin, SUN De-si, XU Jian-ping. Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces[J]. Chinese Journal of Engineering, 2023, 45(8): 1264-1271. doi: 10.13374/j.issn2095-9389.2022.04.28.001
Citation: CHEN Jia-qi, CAO Fei, YOU Jia-qi, YU Sheng-lu, LU Ding-xin, SUN De-si, XU Jian-ping. Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces[J]. Chinese Journal of Engineering, 2023, 45(8): 1264-1271. doi: 10.13374/j.issn2095-9389.2022.04.28.001

O—正丁基—N—異丁基硫氨酯在黃銅礦表面的吸附熱力學和動力學

doi: 10.13374/j.issn2095-9389.2022.04.28.001
基金項目: 礦物加工科學與技術國家重點實驗室開放基金資助項目(BGRIMM-KJSKL-2022-13)
詳細信息
    通訊作者:

    E-mail: jjyz2001@163.com

  • 中圖分類號: TD952

Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces

More Information
  • 摘要: O—正丁基—N—異丁基硫氨酯(NBIB)是一種新型銅硫分離捕收劑。利用紫外?可見分光光度計進行吸附量測定,研究吸附溫度、pH值、時間和捕收劑濃度等對NBIB在黃銅礦表面吸附量的影響,并進行吸附熱力學和動力學研究。純礦物浮選實驗表明,NBIB對黃銅礦具有較強的捕收能力,且受pH影響很小。在溫度分別為288、298、308 K,pH值為6、9、12條件下,NBIB在黃銅礦表面的吸附量隨NBIB濃度的增加而增大,當平衡濃度達到0.5×10?4 mol?L?1,吸附量增加幅度變小。相同pH值時,吸附量隨溫度的升高而增加,推測NBIB捕收劑在黃銅礦表面的吸附為吸熱過程。pH值對吸附量影響不大。將吸附量數據進行Langmuir和Freundlich方程線性擬合,NBIB在黃銅礦表面的吸附過程更符合Langmuir單分子層吸附模型。熱力學計算結果表明,吸附的吉布斯自由能變(?G)均為負值,焓變(?H)和熵變(?S)均為正值,說明黃銅礦吸附NBIB的過程可能為自發進行的、熵驅動的、吸熱的化學吸附。吸附溫度從288 K到308 K,吸附量隨吸附時間和溫度的增加而增大,當吸附時間達到20 min之后,吸附量的增加趨勢變緩。動力學計算表明,二級反應速率方程的線性擬合結果更好,利用二級反應速率方程計算所得的平衡吸附量更接近于實驗平衡吸附量,推測NBIB在黃銅礦表面的吸附符合二級吸附動力學模型。

     

  • 圖  1  捕收劑用量 (a) 和pH (b) 對黃銅礦浮選回收率的影響

    Figure  1.  Influence of collector dosage (a) and pH (b) on the results of the flotation test

    圖  2  不同溫度和pH下NBIB在黃銅礦表面的吸附等溫線. (a) T = 288 K; (b) T = 298 K; (c) T = 308 K; (d) pH 6; (e) pH 9; (f) pH 12

    Figure  2.  Adsorption isotherms of NBIB on chalcopyrite surfaces at different levels of temperature and pH: (a) T = 288 K; (b) T = 298 K; (c) T = 308 K; (d) pH 6; (e) pH 9; (f) pH 12

    圖  3  不同溫度和pH下的Langmuir和Freundlich擬合曲線. (a) ~ (c) Langmuir 擬合曲線; (d) ~ (f) Freundlich擬合曲線

    Figure  3.  Langmuir and Freundlich fitting curves at different levels of temperatures and pH: (a)–(c) Langmuir fitting curves; (d)–(f) Freundlich fitting curves

    圖  4  lnKLT ?1的線性關系

    Figure  4.  Linear relationship between lnKL and T ?1

    圖  5  時間對NBIB在黃銅礦表面吸附量的影響

    Figure  5.  Effect of time on adsorption capacity of NBIB on chalcopyrite surfaces

    圖  6  吸附動力學的線性擬合結果. (a) 準一級; (b) 準二級

    Figure  6.  Linear fitting results of adsorption kinetics: (a) pseudo-first; (b) pseudo-second-order

    表  1  Langmuir 和 Freundlich 等溫吸附方程

    Table  1.   Langmuir and Freundlich adsorption isotherm equation

    pHTemperatur/KLangmuirFreundlich
    Regression equationKL/(L?mol?1)Qm/(μmol?m?2)RL2Regression equationKFnRF2
    6288y = 0.7248x + 26.1912.7×1041.380.954y= 0.456x ? 0.87510.13332.1930.8835
    298y = 0.6243x + 17.6473.5×1041.600.9888y= 0.4047x ? 0.68090.20852.4710.9713
    308y = 0.6003x + 10.9535.5×1041.670.9762y= 0.3553x ? 0.51560.30512.8150.8503
    9288y = 0.694x + 22.9873.0×1041.440.9338y= 0.4514x ? 0.83220.14722.2150.8414
    298y = 0.6331x + 17.9643.7×1041.510.9894y= 0.3872x ? 0.6710.21332.5830.9723
    308y = 0.6879x + 13.2335.2×1041.450.9938y= 0.3354x ? 0.55110.28112.9820.9517
    12288y = 0.8033x + 25.7163.1×1041.240.9523y= 0.4227x ? 0.8420.14392.3660.8501
    298y = 0.7892x + 22.4043.5×1041.270.9762y= 0.3963x ? 0.76970.16702.5230.8912
    308y = 0.7526x + 17.3454.3×1041.330.9907y= 0.3294x ? 0.60510.24833.0360.9809
    下載: 導出CSV

    表  2  黃銅礦吸附NBIB的熱力學參數

    Table  2.   Thermodynamic parameters of NBIB adsorbing on chalcopyrite

    pHRegression equationR2?H / (kJ?mol?1)?S / (J?mol?1?K?1)?G/ (kJ?mol?1)
    288 K298 K308 K
    6y = ?3.0199x + 20.6790.967825.11171.93?24.49?25.95?27.95
    9y = ?2.4021x + 18.630.971919.97154.89?24.70?26.05?27.81
    12y = ?1.4525x + 15.3770.970312.08127.84?24.78?25.94?27.35
    下載: 導出CSV

    表  3  NBIB在黃銅礦表面的吸附動力學參數

    Table  3.   Adsorption kinetics parameters of NBIB on chalcopyrite surfaces

    Temperature/KQe(exp) /
    (μmol?m?2)
    First order kineticsSecond order kinetics
    Regression equationQe(cal)/
    (μmol?m?2)
    k1/
    min?1
    R2Regression equationQe(cal)/
    (μmol?m?2)
    k2/
    (m2?μmol?1?min?1)
    R2
    2881.07y = ?0.030x ? 0.1960.640.0680.983y = 0.878x + 3.8321.130.2040.992
    2981.19y = ?0.025x ? 0.1660.680.0570.983y = 0.803x + 3.6971.240.1760.987
    3081.36y = ?0.020x ? 0.10.800.0470.972y= 0.711x + 3.7281.400.1370.976
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Huang Z J, Wang J J, Sun W, et al. Selective flotation of chalcopyrite from pyrite using diphosphonic acid as collector. Miner Eng, 2019, 140: 105890 doi: 10.1016/j.mineng.2019.105890
    [2] Liu G Y, Yang X L, Zhong H. Molecular design of flotation collectors: A recent progress. Adv Colloid Interface Sci, 2017, 246: 181 doi: 10.1016/j.cis.2017.05.008
    [3] Jia Y, Zhong H, Wang S, et al. Molecular design and green synthesis of collectors. Chin J Nonferrous Met, 2020, 30(2): 456 doi: 10.11817/j.ysxb.1004.0609.2020-37496

    賈云, 鐘宏, 王帥, 等. 捕收劑的分子設計與綠色合成. 中國有色金屬學報, 2020, 30(2):456 doi: 10.11817/j.ysxb.1004.0609.2020-37496
    [4] Wu H X, Shao Y H, Zhang B H, et al. Research progress of flotation reagents for low alkalinity copper-sulfur separation. Min Metall, 2021, 30(4): 33 doi: 10.3969/j.issn.1005-7854.2021.04.006

    吳海祥, 邵延海, 張鉑華, 等. 低堿度銅硫分離浮選藥劑的研究進展. 礦冶, 2021, 30(4):33 doi: 10.3969/j.issn.1005-7854.2021.04.006
    [5] Liu X Y, Han Y X. Adsorption mechanism of collector allyl isobutyl thionocarbamate on the surface of copper sulphide. Met Mine, 2018(1): 88 doi: 10.19614/j.cnki.jsks.201801017

    劉學勇, 韓躍新. 捕收劑烯丙基異丁基硫氨酯在硫化銅礦表面的吸附機理. 金屬礦山, 2018(1):88 doi: 10.19614/j.cnki.jsks.201801017
    [6] Han G, Wen S M, Wang H, et al. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Sep Purif Technol, 2020, 240: 116650 doi: 10.1016/j.seppur.2020.116650
    [7] Tian X D, Li X T, Bi P F. Effect of O-isobutyl-N-ethyl thionocarbamates on flotation behavior of porphyry copper ore and its adsorption mechanism. Appl Surf Sci, 2020, 503: 144313 doi: 10.1016/j.apsusc.2019.144313
    [8] Huang X P, Huang K H, Jia Y, et al. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chem Eng Sci, 2019, 205: 220 doi: 10.1016/j.ces.2019.04.051
    [9] Zhang X R, Lu L, Zhu Y G, et al. Research on the separation of malachite from quartz with S-carboxymethyl-O, O’-dibutyl dithiophosphate chelating collector and its insights into flotation mechanism. Powder Technol, 2020, 366: 130 doi: 10.1016/j.powtec.2020.02.071
    [10] Khoso S A, Hu Y H, Lyu F, et al. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. J Clean Prod, 2019, 232: 888 doi: 10.1016/j.jclepro.2019.06.008
    [11] Yin W Z, Yang B, Fu Y F, et al. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol, 2019, 343: 578 doi: 10.1016/j.powtec.2018.11.048
    [12] Liu W B, Liu W G, Zhao Q, et al. Design and flotation performance of a novel hydroxy polyamine surfactant based on hematite reverse flotation desilication system. J Mol Liq, 2020, 301: 112428 doi: 10.1016/j.molliq.2019.112428
    [13] Wang J L, Cao Z, Wang J Y, et al. Adsorption mechanism of octyl hydroxamic acid on bastnaesite surface. J Central South Univ (Sci Technol), 2019, 50(4): 762

    王介良, 曹釗, 王建英, 等. 辛基羥肟酸在氟碳鈰礦表面的吸附機理. 中南大學學報(自然科學版), 2019, 50(4):762
    [14] Liu M B, Qiang X X, Yin W Z. Adsorption characteristics of salicylhydroxamic acid(SHA) on rutile surface. Nonferrous Met Eng, 2018, 8(5): 40 doi: 10.3969/j.issn.2095-1744.2018.05.010

    劉明寶, 強旭旭, 印萬忠. 水楊羥肟酸在金紅石表面的吸附特性研究. 有色金屬工程, 2018, 8(5):40 doi: 10.3969/j.issn.2095-1744.2018.05.010
    [15] Sun H, Zhang Z Y, Wang Y M, et al. Flotation separation of chalcopyrite from sphalerite with 3-amyl-4-amino-1, 2, 4-triazole-5-thinoe and its underlying mechanism. Min Metall Eng, 2021, 41(3): 51 doi: 10.3969/j.issn.0253-6099.2021.03.012

    孫輝, 張志勇, 王一鳴, 等. 3-戊基-4-氨基-1, 2, 4-三唑-5-硫酮浮選分離黃銅礦與閃鋅礦及其機理. 礦冶工程, 2021, 41(3):51 doi: 10.3969/j.issn.0253-6099.2021.03.012
    [16] Zhang C H, He T S, Li H, et al. Adsorption thermodynamics and kinetics of xanthate at chalcopyrite surface based on ultraviolet spectrophotometry. Spectrosc Spectr Anal, 2019, 39(10): 3172

    張崇輝, 何廷樹, 李慧, 等. 紫外光譜法研究黃藥在黃銅礦表面的吸附熱力學與動力學. 光譜學與光譜分析, 2019, 39(10):3172
    [17] Liu W, Liu G Y, Xiao J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation. Chin J Nonferrous Met, 2017, 27(1): 128 doi: 10.19476/j.ysxb.1004.0609.2017.01.017

    劉微, 劉廣義, 肖靜晶, 等. N-異丁氧羰基硫脲浮選黃銅礦的機理. 中國有色金屬學報, 2017, 27(1):128 doi: 10.19476/j.ysxb.1004.0609.2017.01.017
    [18] Niu X X, Liu G Y, Hu Z, et al. Thermodynamics and mechanism of 5-pentyl-1, 2, 4-triazole-3-thione adsorption on chalcopyrite surfaces. J Central South Univ Sci Technol, 2018, 49(6): 1315

    牛曉雪, 劉廣義, 胡哲, 等. 黃銅礦吸附5-戊基-1, 2, 4-三唑-3-硫酮的熱力學及機理. 中南大學學報(自然科學版), 2018, 49(6):1315
    [19] Sun Q Y, Yin W Z, Cao S H, et al. Adsorption kinetics and thermodynamics of sodium butyl xanthate onto bornite in flotation. J Central South Univ, 2019, 26(11): 2998 doi: 10.1007/s11771-019-4231-3
    [20] Qu X Y, Liu G Y, Liu S, et al. Adsorption kinetics and thermodynamics of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione on surface of chalcopyrite. Chin J Nonferrous Met, 2015, 25(7): 2006

    曲肖彥, 劉廣義, 劉勝, 等. 3-己基-4-氨基-1, 2, 4-三唑-5-硫酮在黃銅礦表面的吸附動力學與熱力學. 中國有色金屬學報, 2015, 25(7):2006
    [21] Cao Y D, Cao Z, Zhang Y H, et al. Effect of Cu(II) and Ni(II) adsorption on serpentine flotation. Chin J Eng, 2016, 38(4): 461

    曹永丹, 曹釗, 張亞輝, 等. Cu(Ⅱ)、Ni(Ⅱ)離子在蛇紋石表面的吸附及對其浮選的影響. 工程科學學報, 2016, 38(4):461
    [22] Liu G Y, Zhang H L, Ren H, et al. Adsorption kinetics and thermodynamics of N, N’-dipropoxypropyl-N”, N’’’-oxydiethylenedicarbonyl bis(thiourea) with chalcopyrite. J Central South Univ Sci Technol, 2015, 46(5): 1588

    劉廣義, 張慧麗, 任恒, 等. N, N’-二異丙氧基丙基-N”, N’’’-氧二乙氧羰基硫脲在黃銅礦表面的吸附動力學和熱力學特性. 中南大學學報(自然科學版), 2015, 46(5):1588
    [23] Kou J, Yang B H, Xu S H, et al. Adsorption kinetics of sodium dodecyl sulfonate onto hematite. Chin J Eng, 2016, 38(10): 1359

    寇玨, 楊葆華, 徐世紅, 等. 十二烷基磺酸鈉在赤鐵礦表面吸附動力學. 工程科學學報, 2016, 38(10):1359
    [24] Liu M B, Yu B, Yin W Z. Effects of slurry pH on adsorption rate of chelating collectors containing benzene ring onto rutile surface. Chin J Process Eng, 2018, 18(2): 399 doi: 10.12034/j.issn.1009-606X.217319

    劉明寶, 魚博, 印萬忠. 礦漿pH值對含苯環螯合捕收劑在金紅石表面吸附速率的影響. 過程工程學報, 2018, 18(2):399 doi: 10.12034/j.issn.1009-606X.217319
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數:  391
  • HTML全文瀏覽量:  187
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-28
  • 網絡出版日期:  2022-06-07
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回