Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces
-
摘要: O—正丁基—N—異丁基硫氨酯(NBIB)是一種新型銅硫分離捕收劑。利用紫外?可見分光光度計進行吸附量測定,研究吸附溫度、pH值、時間和捕收劑濃度等對NBIB在黃銅礦表面吸附量的影響,并進行吸附熱力學和動力學研究。純礦物浮選實驗表明,NBIB對黃銅礦具有較強的捕收能力,且受pH影響很小。在溫度分別為288、298、308 K,pH值為6、9、12條件下,NBIB在黃銅礦表面的吸附量隨NBIB濃度的增加而增大,當平衡濃度達到0.5×10?4 mol?L?1,吸附量增加幅度變小。相同pH值時,吸附量隨溫度的升高而增加,推測NBIB捕收劑在黃銅礦表面的吸附為吸熱過程。pH值對吸附量影響不大。將吸附量數據進行Langmuir和Freundlich方程線性擬合,NBIB在黃銅礦表面的吸附過程更符合Langmuir單分子層吸附模型。熱力學計算結果表明,吸附的吉布斯自由能變(?G)均為負值,焓變(?H)和熵變(?S)均為正值,說明黃銅礦吸附NBIB的過程可能為自發進行的、熵驅動的、吸熱的化學吸附。吸附溫度從288 K到308 K,吸附量隨吸附時間和溫度的增加而增大,當吸附時間達到20 min之后,吸附量的增加趨勢變緩。動力學計算表明,二級反應速率方程的線性擬合結果更好,利用二級反應速率方程計算所得的平衡吸附量更接近于實驗平衡吸附量,推測NBIB在黃銅礦表面的吸附符合二級吸附動力學模型。Abstract: O—butyl—N—isobutyl thionocarbamate (NBIB) is a novel collector for copper sulfur flotation separation. The adsorption capacity of NBIB was measured using a UV–vis spectrophotometer. The effects of the adsorption temperature, pH value, stirring time, and collector concentration on the adsorption capacity of NBIB on chalcopyrite surfaces, as well as its adsorption thermodynamics and kinetics, were investigated. Results of a pure mineral flotation experiment indicate that NBIB has a high recovery rate for chalcopyrite, strong collection capacity, and little influence by pH. The adsorption capacity of NBIB on a chalcopyrite surface increases with an increase in the collector concentration at 288, 298, and 308 K and pH 6, 9, and 12, respectively. When the equilibrium concentration reaches 0.5×10?4 mol?L?1, the adsorption capacity has a small increase range. At the same pH value, the adsorption capacity increases with an increase in the adsorption temperature. It is speculated that NBIB adsorption on a chalcopyrite surface is an endothermic process. At pH 6 and 9, little difference exists in adsorption capacity, which slightly decreases when pH increases to 12. Meanwhile, the pulp pH value has little effect on the adsorption capacity, which is consistent with the flotation test results. The adsorption capacity data were linearly fitted by Langmuir and Freundlich isotherms, and the Langmuir equation has a better correlation coefficient of the fitting curve. The adsorption process of NBIB on the chalcopyrite surface is more consistent with the Langmuir adsorption model, and it is speculated that the adsorption process may be monolayer adsorption. The parameters of the Langmuir equation are considered based on a thermodynamic formula. The results indicate that the linear fitting results are good, ?G is negative, and ?H and ?S are positive. Therefore, the process of chalcopyrite adsorbing NBIB may be spontaneous, entropy-driven, and endothermic chemical adsorption. Meanwhile, the adsorption capacity of NBIB on the chalcopyrite surface increases with an increase in the adsorption time at temperatures from 288 K to 308 K. The increasing trend of adsorption capacity slows down after the adsorption time reaches 20 min. Moreover, the adsorption capacity increases with increasing temperature. Evidently, the adsorption is an endothermic process, which is consistent with the results of the thermodynamic analysis. The kinetic calculation shows that the correlation coefficients of the second-order reaction fitting curve are greater than those of first-order reaction, indicating that the second-order reaction rate equation has a better linear fitting result. The equilibrium adsorption capacity calculated by the second-order reaction rate equation is closer to the experimental equilibrium adsorption capacity. Therefore, it is speculated that the NBIB adsorption on the chalcopyrite surface conforms to the second-order adsorption kinetic model.
-
Key words:
- chalcopyrite /
- thionocarbamate /
- adsorption capacity /
- adsorption thermodynamics /
- kinetics
-
表 1 Langmuir 和 Freundlich 等溫吸附方程
Table 1. Langmuir and Freundlich adsorption isotherm equation
pH Temperatur/K Langmuir Freundlich Regression equation KL/(L?mol?1) Qm/(μmol?m?2) RL2 Regression equation KF n RF2 6 288 y = 0.7248x + 26.191 2.7×104 1.38 0.954 y= 0.456x ? 0.8751 0.1333 2.193 0.8835 298 y = 0.6243x + 17.647 3.5×104 1.60 0.9888 y= 0.4047x ? 0.6809 0.2085 2.471 0.9713 308 y = 0.6003x + 10.953 5.5×104 1.67 0.9762 y= 0.3553x ? 0.5156 0.3051 2.815 0.8503 9 288 y = 0.694x + 22.987 3.0×104 1.44 0.9338 y= 0.4514x ? 0.8322 0.1472 2.215 0.8414 298 y = 0.6331x + 17.964 3.7×104 1.51 0.9894 y= 0.3872x ? 0.671 0.2133 2.583 0.9723 308 y = 0.6879x + 13.233 5.2×104 1.45 0.9938 y= 0.3354x ? 0.5511 0.2811 2.982 0.9517 12 288 y = 0.8033x + 25.716 3.1×104 1.24 0.9523 y= 0.4227x ? 0.842 0.1439 2.366 0.8501 298 y = 0.7892x + 22.404 3.5×104 1.27 0.9762 y= 0.3963x ? 0.7697 0.1670 2.523 0.8912 308 y = 0.7526x + 17.345 4.3×104 1.33 0.9907 y= 0.3294x ? 0.6051 0.2483 3.036 0.9809 表 2 黃銅礦吸附NBIB的熱力學參數
Table 2. Thermodynamic parameters of NBIB adsorbing on chalcopyrite
pH Regression equation R2 ?H / (kJ?mol?1) ?S / (J?mol?1?K?1) ?G/ (kJ?mol?1) 288 K 298 K 308 K 6 y = ?3.0199x + 20.679 0.9678 25.11 171.93 ?24.49 ?25.95 ?27.95 9 y = ?2.4021x + 18.63 0.9719 19.97 154.89 ?24.70 ?26.05 ?27.81 12 y = ?1.4525x + 15.377 0.9703 12.08 127.84 ?24.78 ?25.94 ?27.35 表 3 NBIB在黃銅礦表面的吸附動力學參數
Table 3. Adsorption kinetics parameters of NBIB on chalcopyrite surfaces
Temperature/K Qe(exp) /
(μmol?m?2)First order kinetics Second order kinetics Regression equation Qe(cal)/
(μmol?m?2)k1/
min?1R2 Regression equation Qe(cal)/
(μmol?m?2)k2/
(m2?μmol?1?min?1)R2 288 1.07 y = ?0.030x ? 0.196 0.64 0.068 0.983 y = 0.878x + 3.832 1.13 0.204 0.992 298 1.19 y = ?0.025x ? 0.166 0.68 0.057 0.983 y = 0.803x + 3.697 1.24 0.176 0.987 308 1.36 y = ?0.020x ? 0.1 0.80 0.047 0.972 y= 0.711x + 3.728 1.40 0.137 0.976 www.77susu.com -
參考文獻
[1] Huang Z J, Wang J J, Sun W, et al. Selective flotation of chalcopyrite from pyrite using diphosphonic acid as collector. Miner Eng, 2019, 140: 105890 doi: 10.1016/j.mineng.2019.105890 [2] Liu G Y, Yang X L, Zhong H. Molecular design of flotation collectors: A recent progress. Adv Colloid Interface Sci, 2017, 246: 181 doi: 10.1016/j.cis.2017.05.008 [3] Jia Y, Zhong H, Wang S, et al. Molecular design and green synthesis of collectors. Chin J Nonferrous Met, 2020, 30(2): 456 doi: 10.11817/j.ysxb.1004.0609.2020-37496賈云, 鐘宏, 王帥, 等. 捕收劑的分子設計與綠色合成. 中國有色金屬學報, 2020, 30(2):456 doi: 10.11817/j.ysxb.1004.0609.2020-37496 [4] Wu H X, Shao Y H, Zhang B H, et al. Research progress of flotation reagents for low alkalinity copper-sulfur separation. Min Metall, 2021, 30(4): 33 doi: 10.3969/j.issn.1005-7854.2021.04.006吳海祥, 邵延海, 張鉑華, 等. 低堿度銅硫分離浮選藥劑的研究進展. 礦冶, 2021, 30(4):33 doi: 10.3969/j.issn.1005-7854.2021.04.006 [5] Liu X Y, Han Y X. Adsorption mechanism of collector allyl isobutyl thionocarbamate on the surface of copper sulphide. Met Mine, 2018(1): 88 doi: 10.19614/j.cnki.jsks.201801017劉學勇, 韓躍新. 捕收劑烯丙基異丁基硫氨酯在硫化銅礦表面的吸附機理. 金屬礦山, 2018(1):88 doi: 10.19614/j.cnki.jsks.201801017 [6] Han G, Wen S M, Wang H, et al. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Sep Purif Technol, 2020, 240: 116650 doi: 10.1016/j.seppur.2020.116650 [7] Tian X D, Li X T, Bi P F. Effect of O-isobutyl-N-ethyl thionocarbamates on flotation behavior of porphyry copper ore and its adsorption mechanism. Appl Surf Sci, 2020, 503: 144313 doi: 10.1016/j.apsusc.2019.144313 [8] Huang X P, Huang K H, Jia Y, et al. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chem Eng Sci, 2019, 205: 220 doi: 10.1016/j.ces.2019.04.051 [9] Zhang X R, Lu L, Zhu Y G, et al. Research on the separation of malachite from quartz with S-carboxymethyl-O, O’-dibutyl dithiophosphate chelating collector and its insights into flotation mechanism. Powder Technol, 2020, 366: 130 doi: 10.1016/j.powtec.2020.02.071 [10] Khoso S A, Hu Y H, Lyu F, et al. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. J Clean Prod, 2019, 232: 888 doi: 10.1016/j.jclepro.2019.06.008 [11] Yin W Z, Yang B, Fu Y F, et al. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol, 2019, 343: 578 doi: 10.1016/j.powtec.2018.11.048 [12] Liu W B, Liu W G, Zhao Q, et al. Design and flotation performance of a novel hydroxy polyamine surfactant based on hematite reverse flotation desilication system. J Mol Liq, 2020, 301: 112428 doi: 10.1016/j.molliq.2019.112428 [13] Wang J L, Cao Z, Wang J Y, et al. Adsorption mechanism of octyl hydroxamic acid on bastnaesite surface. J Central South Univ (Sci Technol), 2019, 50(4): 762王介良, 曹釗, 王建英, 等. 辛基羥肟酸在氟碳鈰礦表面的吸附機理. 中南大學學報(自然科學版), 2019, 50(4):762 [14] Liu M B, Qiang X X, Yin W Z. Adsorption characteristics of salicylhydroxamic acid(SHA) on rutile surface. Nonferrous Met Eng, 2018, 8(5): 40 doi: 10.3969/j.issn.2095-1744.2018.05.010劉明寶, 強旭旭, 印萬忠. 水楊羥肟酸在金紅石表面的吸附特性研究. 有色金屬工程, 2018, 8(5):40 doi: 10.3969/j.issn.2095-1744.2018.05.010 [15] Sun H, Zhang Z Y, Wang Y M, et al. Flotation separation of chalcopyrite from sphalerite with 3-amyl-4-amino-1, 2, 4-triazole-5-thinoe and its underlying mechanism. Min Metall Eng, 2021, 41(3): 51 doi: 10.3969/j.issn.0253-6099.2021.03.012孫輝, 張志勇, 王一鳴, 等. 3-戊基-4-氨基-1, 2, 4-三唑-5-硫酮浮選分離黃銅礦與閃鋅礦及其機理. 礦冶工程, 2021, 41(3):51 doi: 10.3969/j.issn.0253-6099.2021.03.012 [16] Zhang C H, He T S, Li H, et al. Adsorption thermodynamics and kinetics of xanthate at chalcopyrite surface based on ultraviolet spectrophotometry. Spectrosc Spectr Anal, 2019, 39(10): 3172張崇輝, 何廷樹, 李慧, 等. 紫外光譜法研究黃藥在黃銅礦表面的吸附熱力學與動力學. 光譜學與光譜分析, 2019, 39(10):3172 [17] Liu W, Liu G Y, Xiao J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation. Chin J Nonferrous Met, 2017, 27(1): 128 doi: 10.19476/j.ysxb.1004.0609.2017.01.017劉微, 劉廣義, 肖靜晶, 等. N-異丁氧羰基硫脲浮選黃銅礦的機理. 中國有色金屬學報, 2017, 27(1):128 doi: 10.19476/j.ysxb.1004.0609.2017.01.017 [18] Niu X X, Liu G Y, Hu Z, et al. Thermodynamics and mechanism of 5-pentyl-1, 2, 4-triazole-3-thione adsorption on chalcopyrite surfaces. J Central South Univ Sci Technol, 2018, 49(6): 1315牛曉雪, 劉廣義, 胡哲, 等. 黃銅礦吸附5-戊基-1, 2, 4-三唑-3-硫酮的熱力學及機理. 中南大學學報(自然科學版), 2018, 49(6):1315 [19] Sun Q Y, Yin W Z, Cao S H, et al. Adsorption kinetics and thermodynamics of sodium butyl xanthate onto bornite in flotation. J Central South Univ, 2019, 26(11): 2998 doi: 10.1007/s11771-019-4231-3 [20] Qu X Y, Liu G Y, Liu S, et al. Adsorption kinetics and thermodynamics of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione on surface of chalcopyrite. Chin J Nonferrous Met, 2015, 25(7): 2006曲肖彥, 劉廣義, 劉勝, 等. 3-己基-4-氨基-1, 2, 4-三唑-5-硫酮在黃銅礦表面的吸附動力學與熱力學. 中國有色金屬學報, 2015, 25(7):2006 [21] Cao Y D, Cao Z, Zhang Y H, et al. Effect of Cu(II) and Ni(II) adsorption on serpentine flotation. Chin J Eng, 2016, 38(4): 461曹永丹, 曹釗, 張亞輝, 等. Cu(Ⅱ)、Ni(Ⅱ)離子在蛇紋石表面的吸附及對其浮選的影響. 工程科學學報, 2016, 38(4):461 [22] Liu G Y, Zhang H L, Ren H, et al. Adsorption kinetics and thermodynamics of N, N’-dipropoxypropyl-N”, N’’’-oxydiethylenedicarbonyl bis(thiourea) with chalcopyrite. J Central South Univ Sci Technol, 2015, 46(5): 1588劉廣義, 張慧麗, 任恒, 等. N, N’-二異丙氧基丙基-N”, N’’’-氧二乙氧羰基硫脲在黃銅礦表面的吸附動力學和熱力學特性. 中南大學學報(自然科學版), 2015, 46(5):1588 [23] Kou J, Yang B H, Xu S H, et al. Adsorption kinetics of sodium dodecyl sulfonate onto hematite. Chin J Eng, 2016, 38(10): 1359寇玨, 楊葆華, 徐世紅, 等. 十二烷基磺酸鈉在赤鐵礦表面吸附動力學. 工程科學學報, 2016, 38(10):1359 [24] Liu M B, Yu B, Yin W Z. Effects of slurry pH on adsorption rate of chelating collectors containing benzene ring onto rutile surface. Chin J Process Eng, 2018, 18(2): 399 doi: 10.12034/j.issn.1009-606X.217319劉明寶, 魚博, 印萬忠. 礦漿pH值對含苯環螯合捕收劑在金紅石表面吸附速率的影響. 過程工程學報, 2018, 18(2):399 doi: 10.12034/j.issn.1009-606X.217319 -