<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

輕質混凝土拼裝墻板填充鋼框架協同抗震性能試驗研究

李悅 高崇銘 宋波 李曉潤 劉楚涵

李悅, 高崇銘, 宋波, 李曉潤, 劉楚涵. 輕質混凝土拼裝墻板填充鋼框架協同抗震性能試驗研究[J]. 工程科學學報, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001
引用本文: 李悅, 高崇銘, 宋波, 李曉潤, 劉楚涵. 輕質混凝土拼裝墻板填充鋼框架協同抗震性能試驗研究[J]. 工程科學學報, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001
LI Yue, GAO Chong-ming, SONG Bo, LI Xiao-run, LIU Chu-han. Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels[J]. Chinese Journal of Engineering, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001
Citation: LI Yue, GAO Chong-ming, SONG Bo, LI Xiao-run, LIU Chu-han. Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels[J]. Chinese Journal of Engineering, 2023, 45(8): 1364-1375. doi: 10.13374/j.issn2095-9389.2022.04.26.001

輕質混凝土拼裝墻板填充鋼框架協同抗震性能試驗研究

doi: 10.13374/j.issn2095-9389.2022.04.26.001
基金項目: 國家自然科學基金資助項目(51408009, 52078038);科技部國家級外專項目(G2021105009L);北京市屬高校基本科研業務費資助項目(110052971921/062)
詳細信息
    通訊作者:

    E-mail: songbo@ces.ustb.edu.cn

  • 中圖分類號: TH213.3

Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels

More Information
  • 摘要: 為了研究墻板與鋼框架結構之間的協同抗震性能,對采用不同墻框連接節點的輕質混凝土拼裝墻板填充鋼框架進行了低周往復荷載試驗。通過對比試件的承載力、滯回性能、剛度、耗能以及延性性能,探討了輕質混凝土拼裝墻板及其整體性對結構抗震性能的影響。結果表明:填充墻板鋼框架結構的最終破壞形態以墻板擠壓開裂,框架梁柱端部翼緣屈曲為主;輕質混凝土拼裝墻板與鋼框架協同工作,有利于提高結構整體的承載力和變形能力,減輕鋼框架在平面內的屈曲破壞;與剛性節點相比,采用柔性節點連接墻板與鋼框架對結構的承載力、層間剛度和耗能能力更為有利;增強拼裝墻板的整體性,有助于提高結構整體剛度、變形和耗能能力。研究結果可為輕質混凝土拼裝墻板填充鋼框架結構的抗震設計提供參考。

     

  • 圖  1  試件幾何尺寸. (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    Figure  1.  Geometry of the specimen: (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    圖  2  墻板配筋示意

    Figure  2.  Reinforcement of wall panels

    圖  3  墻板與框架連接節點示意. (a) 剛性節點; (b)柔性節點

    Figure  3.  Connectors between the panel and the frame: (a) hooking joint; (b) sliding joint

    圖  4  試件加載布置. (a) 示意圖; (b) 試驗現場

    Figure  4.  Test setup: (a) general view; (b) test site

    圖  5  測點布置示意

    Figure  5.  Arrangement of measurement points

    圖  6  加載制度

    Figure  6.  Loading protocol

    圖  7  CG I破壞特征. (a) 墻板斜向裂縫; (b) 框架柱腳翼緣屈曲; (c) 墻板混凝土壓碎; (d) 最終破壞

    Figure  7.  Damage modes of CG I: (a) diagonal cracking of wall panels; (b) buckling of the flange in the column; (c) crushing of wall panel concrete; (d) ultimate failure

    圖  8  CG II破壞特征. (a) 柱腳翼緣屈曲; (b) 墻板混凝土壓碎; (c)最終破壞

    Figure  8.  Damage modes of CG II: (a) buckling of the flange in the column; (b) crushing of the wall panel; (d) ultimate failure

    圖  9  JG I破壞特征. (a) 柱翼緣屈曲; (b) 纖維布破壞; (c) 墻板接縫處破壞; (d) 框架柱嚴重屈曲; (e) 最終破壞

    Figure  9.  Damage modes of JG I: (a) buckling of the column flange; (b) tear of the carbon fiber cloth; (c) damage of the panel joint; (d) serious buckling of the column; (e) ultimate failure

    圖  10  JG II破壞特征. (a) 柱翼緣屈曲; (b) 纖維布破壞; (c) 墻板開裂; (d) 柱翼緣嚴重變形; (e) 最終破壞

    Figure  10.  Damage modes of JG II: (a) buckling of the column flange; (b) tear of the carbon fiber cloth; (c) crack of the panel; (d) serious buckling of the column; (e) ultimate failure

    圖  11  KJ破壞特征. (a) 焊縫開裂; (b) 柱腳屈曲; (c) 整體變形; (d) 平面外失穩

    Figure  11.  Damage modes of KJ: (a) welding crack; (b) buckling of the footing; (c) whole deformation; (d) out-of-plane instability

    圖  12  試件滯回曲線. (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    Figure  12.  Hysteretic loops of the specimen: (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    圖  13  骨架曲線

    Figure  13.  Skeleton curves of specimens

    圖  14  歸一化剛度退化曲線

    Figure  14.  Curves of normalized stiffness degradation

    圖  15  強度退化曲線

    Figure  15.  Curve of strength degradation

    圖  16  累積耗能曲線

    Figure  16.  Curve of cumulative energy dissipation

    圖  17  荷載?應變曲線. (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    Figure  17.  Curve of load?strain: (a) CG I; (b) CG II; (c) JG I; (d) JG II; (e) KJ

    表  1  試件主要參數

    Table  1.   Main parameters of specimens

    Specimen No.Wall panel typesConnectionReinforcing method
    CG IVertical wall panelsHooking connector with beam
    CG IIVertical wall panelsSliding connector with beam
    JG IReinforced vertical wall panelsHooking connector with beamReinforced at both ends
    JG IIReinforced vertical wall panelsSliding connector with beamReinforced at both ends
    KJ
    下載: 導出CSV

    表  2  鋼材力學性能

    Table  2.   Mechanical properties of steel

    SpecimenDiameter or thickness /mmYield stress, fy/ MPaUltimate stress, fu / MPaYoung’s modulus, Es / MPa
    Rebar6.5338.3501.8210000
    H-shaped steel11351.5524.2300000
    下載: 導出CSV

    表  3  碳纖維布基本性能

    Table  3.   Properties of CFRP cloth

    Thickness, t /mmDensity, ρ / (g·cm?3)Elastic modulus, ECFRP / MPaTensile strength, σ / MPa
    0.111.82300004900
    下載: 導出CSV

    表  4  骨架曲線特征點實測值

    Table  4.   Measured value of characteristic points on skeleton curves

    SpecimenLoading directionXy/mmFy/kNXmax/mmFmax/kNXu/mmFu/kNYield displacement
    angle, θy / (10?3 rad)
    Peak displacement
    angle, θmax / (10?3 rad)
    Μ=θmax/θy
    CG IPositive13.68200.8949.55375.3062.15319.018.1328.473.50
    Negative13.48209.1245.55322.1868.34273.85
    CG IIPositive15.45267.7460.47397.1978.23337.619.2236.353.94
    Negative15.43274.1860.98400.3477.98340.29
    JG IPositive14.93277.0551.91445.0368.23378.288.9528.873.23
    Negative14.97289.0244.55392.0562.44333.24
    JG IIPositive17.47308.0360.11481.7580.21409.4910.2236.803.60
    Negative16.67313.3162.86479.1386.16407.26
    KJPositive11.94163.5533.16308.3837.32262.127.1617.742.48
    Negative11.98156.6326.10298.2137.21253.47
    下載: 導出CSV

    表  5  試件累積耗能

    Table  5.   Energy consumption values of the specimen

    SpecimenEt/(kN·mm)ρ
    CG I27966.51.71
    CG II37172.42.27
    JG I47332.32.89
    JG II57999.33.54
    KJ16373.91
    Notes: Et is the cumulative total energy consumption of the specimen, ρ is the ratio of the cumulative total energy consumption to the total KJ energy consumption.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang J F, Li B B. Cyclic testing of square CFST frames with ALC panel or block walls. J Constr Steel Res, 2017, 132: 264
    [2] Ye L P, Lu X Z, Zhao S C, et al. Seismic collapse resistance of RC frame structures—Case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan earthquake. J Build Struct, 2009, 30(6): 67 doi: 10.14006/j.jzjgxb.2009.06.009

    葉列平, 陸新征, 趙世春, 等. 框架結構抗地震倒塌能力的研究——汶川地震極震區幾個框架結構震害案例分析. 建筑結構學報, 2009, 30(6):67 doi: 10.14006/j.jzjgxb.2009.06.009
    [3] Wu C X, Xiong X P, Xu H, et al. Experimental study on the seismic performance of a new type assembled metal energy dissipation composite wallboard. J Vib Shock, 2020, 39(9): 159

    吳從曉, 熊曉鵬, 徐虎, 等. 新型裝配式金屬消能減震復合墻板抗震性能試驗研究. 振動與沖擊, 2020, 39(9):159
    [4] Zhou Y, Tong B, Chen Z Y, et al. Experimental study on seismic performance of damaged frame retrofitted by precast damping wall. J Build Struct, 2019, 40(10): 140 doi: 10.14006/j.jzjgxb.2017.0646

    周云, 童博, 陳章彥, 等. 預制減震墻板加固震損框架抗震性能試驗研究. 建筑結構學報, 2019, 40(10):140 doi: 10.14006/j.jzjgxb.2017.0646
    [5] Guo Z X, Wang W, Hou W, et al. Experimental study on earthquake damaged frames retrofitted with prefabricated insulation sandwich walls. J Build Struct, 2015, 36(4): 42 doi: 10.14006/j.jzjgxb.2015.04.006

    郭子雄, 王偉, 侯煒, 等. 預制自保溫鋼筋混凝土墻板加固震損框架試驗研究. 建筑結構學報, 2015, 36(4):42 doi: 10.14006/j.jzjgxb.2015.04.006
    [6] Pavese A, Bournas D A. Experimental assessment of the seismic performance of a prefabricated concrete structural wall system. Eng Struct, 2011, 33(6): 2049 doi: 10.1016/j.engstruct.2011.02.043
    [7] Wang R W, Cao W L, Yin F, et al. Experimental and numerical study regarding a fabricated CFST frame composite wall structure. J Constr Steel Res, 2019, 162: 105718 doi: 10.1016/j.jcsr.2019.105718
    [8] Matteis G D, Landolfo R. Diaphragm action of sandwich panels in pin-jointed steel structures: A seismic study. J Earthq Eng, 2000, 4(3): 251
    [9] Hashemi S J, Razzaghi J, Moghadam A S, et al. Cyclic testing of steel frames infilled with concrete sandwich panels. Archiv Civ Mech Eng, 2018, 18(2): 557 doi: 10.1016/j.acme.2017.10.007
    [10] Wang J F, Shen Q H, Li B B. Seismic behavior investigation on blind bolted CFST frames with precast SCWPs. Int J Steel Struct, 2018, 18(5): 1666 doi: 10.1007/s13296-018-0068-0
    [11] Wang S G, Zhuang L, Du D S, et al. Full scale shaking table tests on frame structure with new SIP filling wallboard. J Vib Shock, 2015, 34(18): 100 doi: 10.13465/j.cnki.jvs.2015.18.017

    王曙光, 莊麗, 杜東升, 等. 新型SIP填充墻板框架結構足尺振動臺試驗研究. 振動與沖擊, 2015, 34(18):100 doi: 10.13465/j.cnki.jvs.2015.18.017
    [12] Cao W L, Liu Z B, Liu Y, et al. Experimental study on combining effect of assembled lightweight CFST frames with composite walls. J Build Struct, 2019, 40(8): 12

    曹萬林, 劉子斌, 劉巖, 等. 裝配式輕型鋼管混凝土框架?復合墻共同工作性能試驗研究. 建筑結構學報, 2019, 40(8):12
    [13] Jia S Z, Cao W L, Wang R W, et al. Experimental study on seismic performance of fabricated composite structure of thin slab with lightweight steel frame for low-rise housing. J Southeast Univ Nat Sci Ed, 2018, 48(2): 323 doi: 10.3969/j.issn.1001-0505.2018.02.021

    賈穗子, 曹萬林, 王如偉, 等. 適于低層農房的裝配式輕鋼邊框?薄墻板組合結構抗震性能試驗研究. 東南大學學報(自然科學版), 2018, 48(2):323 doi: 10.3969/j.issn.1001-0505.2018.02.021
    [14] Wang R W, Cao W L, Yin F. Influence of installation depth of composite wall on seismic performance of assembly light steel frame–composite wall structures. Build Struct, 2021, 51(5): 54

    王如偉, 曹萬林, 殷飛. 復合墻嵌入深度對裝配式輕鋼框架–復合墻結構抗震性能的影響. 建筑結構, 2021, 51(5):54
    [15] Li T, Galati N, Tumialan J G, et al. Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI Struct J, 2005, 102(4): 569
    [16] Maddaloni G, Ludovico M D, Balsamo A, et al. Out-of-plane experimental behaviour of T-shaped full scale masonry wall strengthened with composite connections. Compos B Eng, 2016, 93: 328 doi: 10.1016/j.compositesb.2016.03.026
    [17] Dizhur D, Griffith M, Ingham J. Out-of-plane strengthening of unreinforced masonry walls using near surface mounted fibre reinforced polymer strips. Eng Struct, 2014, 59: 330 doi: 10.1016/j.engstruct.2013.10.026
    [18] Wang T W. Civil Engineering Structural Test. Wuhan: Wuhan University of Technology Press, 2006

    王天穩. 土木工程結構試驗. 武漢: 武漢理工大學出版社, 2006
    [19] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50017—2017 Code for the Design of Steel Structures. Beijing: China Construction Industry Press, 2017

    中華人民共和國住房和城鄉建設部. GB50017—2017鋼結構設計規范. 北京: 中國建筑工業出版社, 2017
    [20] China Institute of Building Standard Design & Research. 19CJ85-1 Prefabricated Building Autoclaved Aerated Concrete Slab Enclosure System. Beijing: China Planning Press, 2019

    中國建筑標準設計研究院. 19CJ85-1裝配式建筑蒸壓加氣混凝土板圍護系統. 北京: 中國計劃出版社, 2019
    [21] State Administration for Market Regulation, People’s Republic of China. GB/T228.1—2021 Tensile Testing of Metallic Materials: Part 1: Room Temperature Test Method. Beijing: China Standard Press, 2021

    中華人民共和國國家市場監督管理總局. GB/T228.1—2021金屬材料拉伸試驗: 第1部分: 室溫試驗方法. 北京: 中國標準出版社, 2021
    [22] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 11969—2020 Test Method for the Properties of Autoclaved Aerated Concrete. Beijing: China Construction Industry Press, 2020

    中華人民共和國國家質量監督檢驗檢疫總局. GB/T 11969—2020 蒸壓加氣混凝土性能試驗方法. 北京: 中國建筑工業出版, 2020
    [23] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50011—2010 Code for Seismic Design of Buildings. Beijing: China Construction Industry Press, 2010

    中華人民共和國住房和城鄉建設部. GB50011—2010建筑抗震設計規范. 北京: 中國建筑工業出版社, 2010
    [24] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ/T101—2015 Seismic Test Procedure for Buildings. Beijing: China Construction Industry Press, 2015

    中華人民共和國住房和城鄉建設部. JGJ/T101—2015建筑抗震試驗規程. 北京: 中國建筑工業出版社, 2015
    [25] Qiu C X. Investigations of the Hysteresis Performance of the Steel Frames Infilled with Composite Panels [Dissertation]. Jinan: Shandong University, 2011

    邱燦星. 帶復合墻板鋼框架的滯回性能研究[學位論文]. 濟南: 山東大學, 2011
    [26] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ 99—2015 Technical Specification for Steel Structure of Tall Building. Beijing: China Construction Industry Press, 2015

    中華人民共和國住房和城鄉建設部. JGJ 99—2015高層民用建筑鋼結構技術規程. 北京: 中國建筑工業出版社, 2015
  • 加載中
圖(17) / 表(5)
計量
  • 文章訪問數:  376
  • HTML全文瀏覽量:  135
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-26
  • 網絡出版日期:  2022-10-04
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回