Experimental study of the synergistic seismic performance of steel frame filled with assembled lightweight concrete wall panels
-
摘要: 為了研究墻板與鋼框架結構之間的協同抗震性能,對采用不同墻框連接節點的輕質混凝土拼裝墻板填充鋼框架進行了低周往復荷載試驗。通過對比試件的承載力、滯回性能、剛度、耗能以及延性性能,探討了輕質混凝土拼裝墻板及其整體性對結構抗震性能的影響。結果表明:填充墻板鋼框架結構的最終破壞形態以墻板擠壓開裂,框架梁柱端部翼緣屈曲為主;輕質混凝土拼裝墻板與鋼框架協同工作,有利于提高結構整體的承載力和變形能力,減輕鋼框架在平面內的屈曲破壞;與剛性節點相比,采用柔性節點連接墻板與鋼框架對結構的承載力、層間剛度和耗能能力更為有利;增強拼裝墻板的整體性,有助于提高結構整體剛度、變形和耗能能力。研究結果可為輕質混凝土拼裝墻板填充鋼框架結構的抗震設計提供參考。Abstract: In China, more and more buildings use assembled frame structures such as prefabricated autoclaved lightweight concrete wall panels used as the exterior wall. In structural design, these wall panels are usually considered non-structural components. However, in the event of an earthquake, the damage and collapse of these wall panels are likely to lead to casualties and economic losses. In addition to the damaged wall panels, the connection between the wall panels and the main structure is also an important factor affecting the seismic performance of the structure. The traditional connection between the wall panels and the frame can be easily damaged in an earthquake. The seismic performance of frame structures based on the new connections and the integrity of the lightweight, concrete-filled wall panels needs to be explored. To investigate the synergistic seismic performance of the wall panels and the steel frame structures, low cycle reciprocating load tests were carried out on the steel frames infilled with the lightweight concrete assembled wall panels. A new sliding joint was developed to connect the wall panels and the steel frames, and its performance was compared with the traditional hooking joints. The effect of lightweight concrete wall panels and their integrity on the seismic performance of the structures was investigated by analyzing the load-bearing capacity, hysteresis performance, stiffness, energy dissipation, and ductility of the specimens. The results show that extrusion cracking of the wall panel and buckling at the end of the frame columns are the ultimate damage modes of the filled wall panel steel frame structures. The synergy of the wall panels and the steel frame improves the load-bearing and deformation capacity of the structure as compared to a hollow frame. The structure with sliding joints is better in terms of load-bearing capacity, stiffness, and energy dissipation capacity. Enclosed by CFRP cloth, the enhanced integral wall panels can improve the ductility, stiffness, deformability, and energy dissipation capacity of the structure. It is suggested that the improved seismic performance of frame structures by the infilled wall panels should be considered in the design of prefabricated frame structures and that the wall panels and the frames should be connected by sliding joints. These experimental results can provide a reference for the seismic design of steel frame structures filled with lightweight concrete assembled wall panels.
-
表 1 試件主要參數
Table 1. Main parameters of specimens
Specimen No. Wall panel types Connection Reinforcing method CG I Vertical wall panels Hooking connector with beam CG II Vertical wall panels Sliding connector with beam JG I Reinforced vertical wall panels Hooking connector with beam Reinforced at both ends JG II Reinforced vertical wall panels Sliding connector with beam Reinforced at both ends KJ 表 2 鋼材力學性能
Table 2. Mechanical properties of steel
Specimen Diameter or thickness /mm Yield stress, fy/ MPa Ultimate stress, fu / MPa Young’s modulus, Es / MPa Rebar 6.5 338.3 501.8 210000 H-shaped steel 11 351.5 524.2 300000 表 3 碳纖維布基本性能
Table 3. Properties of CFRP cloth
Thickness, t /mm Density, ρ / (g·cm?3) Elastic modulus, ECFRP / MPa Tensile strength, σ / MPa 0.11 1.8 230000 4900 表 4 骨架曲線特征點實測值
Table 4. Measured value of characteristic points on skeleton curves
Specimen Loading direction Xy/mm Fy/kN Xmax/mm Fmax/kN Xu/mm Fu/kN Yield displacement
angle, θy / (10?3 rad)Peak displacement
angle, θmax / (10?3 rad)Μ=θmax/θy CG I Positive 13.68 200.89 49.55 375.30 62.15 319.01 8.13 28.47 3.50 Negative 13.48 209.12 45.55 322.18 68.34 273.85 CG II Positive 15.45 267.74 60.47 397.19 78.23 337.61 9.22 36.35 3.94 Negative 15.43 274.18 60.98 400.34 77.98 340.29 JG I Positive 14.93 277.05 51.91 445.03 68.23 378.28 8.95 28.87 3.23 Negative 14.97 289.02 44.55 392.05 62.44 333.24 JG II Positive 17.47 308.03 60.11 481.75 80.21 409.49 10.22 36.80 3.60 Negative 16.67 313.31 62.86 479.13 86.16 407.26 KJ Positive 11.94 163.55 33.16 308.38 37.32 262.12 7.16 17.74 2.48 Negative 11.98 156.63 26.10 298.21 37.21 253.47 表 5 試件累積耗能
Table 5. Energy consumption values of the specimen
Specimen Et/(kN·mm) ρ CG I 27966.5 1.71 CG II 37172.4 2.27 JG I 47332.3 2.89 JG II 57999.3 3.54 KJ 16373.9 1 Notes: Et is the cumulative total energy consumption of the specimen, ρ is the ratio of the cumulative total energy consumption to the total KJ energy consumption. www.77susu.com -
參考文獻
[1] Wang J F, Li B B. Cyclic testing of square CFST frames with ALC panel or block walls. J Constr Steel Res, 2017, 132: 264 [2] Ye L P, Lu X Z, Zhao S C, et al. Seismic collapse resistance of RC frame structures—Case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan earthquake. J Build Struct, 2009, 30(6): 67 doi: 10.14006/j.jzjgxb.2009.06.009葉列平, 陸新征, 趙世春, 等. 框架結構抗地震倒塌能力的研究——汶川地震極震區幾個框架結構震害案例分析. 建筑結構學報, 2009, 30(6):67 doi: 10.14006/j.jzjgxb.2009.06.009 [3] Wu C X, Xiong X P, Xu H, et al. Experimental study on the seismic performance of a new type assembled metal energy dissipation composite wallboard. J Vib Shock, 2020, 39(9): 159吳從曉, 熊曉鵬, 徐虎, 等. 新型裝配式金屬消能減震復合墻板抗震性能試驗研究. 振動與沖擊, 2020, 39(9):159 [4] Zhou Y, Tong B, Chen Z Y, et al. Experimental study on seismic performance of damaged frame retrofitted by precast damping wall. J Build Struct, 2019, 40(10): 140 doi: 10.14006/j.jzjgxb.2017.0646周云, 童博, 陳章彥, 等. 預制減震墻板加固震損框架抗震性能試驗研究. 建筑結構學報, 2019, 40(10):140 doi: 10.14006/j.jzjgxb.2017.0646 [5] Guo Z X, Wang W, Hou W, et al. Experimental study on earthquake damaged frames retrofitted with prefabricated insulation sandwich walls. J Build Struct, 2015, 36(4): 42 doi: 10.14006/j.jzjgxb.2015.04.006郭子雄, 王偉, 侯煒, 等. 預制自保溫鋼筋混凝土墻板加固震損框架試驗研究. 建筑結構學報, 2015, 36(4):42 doi: 10.14006/j.jzjgxb.2015.04.006 [6] Pavese A, Bournas D A. Experimental assessment of the seismic performance of a prefabricated concrete structural wall system. Eng Struct, 2011, 33(6): 2049 doi: 10.1016/j.engstruct.2011.02.043 [7] Wang R W, Cao W L, Yin F, et al. Experimental and numerical study regarding a fabricated CFST frame composite wall structure. J Constr Steel Res, 2019, 162: 105718 doi: 10.1016/j.jcsr.2019.105718 [8] Matteis G D, Landolfo R. Diaphragm action of sandwich panels in pin-jointed steel structures: A seismic study. J Earthq Eng, 2000, 4(3): 251 [9] Hashemi S J, Razzaghi J, Moghadam A S, et al. Cyclic testing of steel frames infilled with concrete sandwich panels. Archiv Civ Mech Eng, 2018, 18(2): 557 doi: 10.1016/j.acme.2017.10.007 [10] Wang J F, Shen Q H, Li B B. Seismic behavior investigation on blind bolted CFST frames with precast SCWPs. Int J Steel Struct, 2018, 18(5): 1666 doi: 10.1007/s13296-018-0068-0 [11] Wang S G, Zhuang L, Du D S, et al. Full scale shaking table tests on frame structure with new SIP filling wallboard. J Vib Shock, 2015, 34(18): 100 doi: 10.13465/j.cnki.jvs.2015.18.017王曙光, 莊麗, 杜東升, 等. 新型SIP填充墻板框架結構足尺振動臺試驗研究. 振動與沖擊, 2015, 34(18):100 doi: 10.13465/j.cnki.jvs.2015.18.017 [12] Cao W L, Liu Z B, Liu Y, et al. Experimental study on combining effect of assembled lightweight CFST frames with composite walls. J Build Struct, 2019, 40(8): 12曹萬林, 劉子斌, 劉巖, 等. 裝配式輕型鋼管混凝土框架?復合墻共同工作性能試驗研究. 建筑結構學報, 2019, 40(8):12 [13] Jia S Z, Cao W L, Wang R W, et al. Experimental study on seismic performance of fabricated composite structure of thin slab with lightweight steel frame for low-rise housing. J Southeast Univ Nat Sci Ed, 2018, 48(2): 323 doi: 10.3969/j.issn.1001-0505.2018.02.021賈穗子, 曹萬林, 王如偉, 等. 適于低層農房的裝配式輕鋼邊框?薄墻板組合結構抗震性能試驗研究. 東南大學學報(自然科學版), 2018, 48(2):323 doi: 10.3969/j.issn.1001-0505.2018.02.021 [14] Wang R W, Cao W L, Yin F. Influence of installation depth of composite wall on seismic performance of assembly light steel frame–composite wall structures. Build Struct, 2021, 51(5): 54王如偉, 曹萬林, 殷飛. 復合墻嵌入深度對裝配式輕鋼框架–復合墻結構抗震性能的影響. 建筑結構, 2021, 51(5):54 [15] Li T, Galati N, Tumialan J G, et al. Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI Struct J, 2005, 102(4): 569 [16] Maddaloni G, Ludovico M D, Balsamo A, et al. Out-of-plane experimental behaviour of T-shaped full scale masonry wall strengthened with composite connections. Compos B Eng, 2016, 93: 328 doi: 10.1016/j.compositesb.2016.03.026 [17] Dizhur D, Griffith M, Ingham J. Out-of-plane strengthening of unreinforced masonry walls using near surface mounted fibre reinforced polymer strips. Eng Struct, 2014, 59: 330 doi: 10.1016/j.engstruct.2013.10.026 [18] Wang T W. Civil Engineering Structural Test. Wuhan: Wuhan University of Technology Press, 2006王天穩. 土木工程結構試驗. 武漢: 武漢理工大學出版社, 2006 [19] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50017—2017 Code for the Design of Steel Structures. Beijing: China Construction Industry Press, 2017中華人民共和國住房和城鄉建設部. GB50017—2017鋼結構設計規范. 北京: 中國建筑工業出版社, 2017 [20] China Institute of Building Standard Design & Research. 19CJ85-1 Prefabricated Building Autoclaved Aerated Concrete Slab Enclosure System. Beijing: China Planning Press, 2019中國建筑標準設計研究院. 19CJ85-1裝配式建筑蒸壓加氣混凝土板圍護系統. 北京: 中國計劃出版社, 2019 [21] State Administration for Market Regulation, People’s Republic of China. GB/T228.1—2021 Tensile Testing of Metallic Materials: Part 1: Room Temperature Test Method. Beijing: China Standard Press, 2021中華人民共和國國家市場監督管理總局. GB/T228.1—2021金屬材料拉伸試驗: 第1部分: 室溫試驗方法. 北京: 中國標準出版社, 2021 [22] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 11969—2020 Test Method for the Properties of Autoclaved Aerated Concrete. Beijing: China Construction Industry Press, 2020中華人民共和國國家質量監督檢驗檢疫總局. GB/T 11969—2020 蒸壓加氣混凝土性能試驗方法. 北京: 中國建筑工業出版, 2020 [23] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50011—2010 Code for Seismic Design of Buildings. Beijing: China Construction Industry Press, 2010中華人民共和國住房和城鄉建設部. GB50011—2010建筑抗震設計規范. 北京: 中國建筑工業出版社, 2010 [24] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ/T101—2015 Seismic Test Procedure for Buildings. Beijing: China Construction Industry Press, 2015中華人民共和國住房和城鄉建設部. JGJ/T101—2015建筑抗震試驗規程. 北京: 中國建筑工業出版社, 2015 [25] Qiu C X. Investigations of the Hysteresis Performance of the Steel Frames Infilled with Composite Panels [Dissertation]. Jinan: Shandong University, 2011邱燦星. 帶復合墻板鋼框架的滯回性能研究[學位論文]. 濟南: 山東大學, 2011 [26] Ministry of Housing and Urban-Rural Development, People’s Republic of China. JGJ 99—2015 Technical Specification for Steel Structure of Tall Building. Beijing: China Construction Industry Press, 2015中華人民共和國住房和城鄉建設部. JGJ 99—2015高層民用建筑鋼結構技術規程. 北京: 中國建筑工業出版社, 2015 -