-
摘要: 目前微生物腐蝕(MIC)在工業環境中已成為普遍存在的嚴重問題,其是造成腐蝕損壞、設備故障和經濟損失的主要原因之一。雖然部分經典的腐蝕理論能夠解釋一些微生物腐蝕的現象,但這些機理的片面性也逐漸暴露出來。隨著對腐蝕菌種類的研究越來越多,人們對微生物腐蝕機理的認識也更加全面深入。本文重點介紹了易導致腐蝕的微生物種類及特征,如硫酸鹽還原菌、硝酸鹽還原菌和鐵氧化菌等,并總結了微生物腐蝕機理中基于生物能學和生物電化學的最新研究進展,包括微生物胞外電子傳遞過程、代謝產物腐蝕和濃差電池作用等理論,為工業中厭氧及好氧條件下微生物腐蝕的診斷、預測及防治提供了理論指導。Abstract: Corrosion is a global problem affecting a wide variety of the mechanical structures of piping, buildings, transportation, sewage, and automotive parts. Corrosion is an abiotic electrochemical reaction of metal oxidation with oxygen and water. Under anoxic conditions, the only reactant available for iron oxidation is water-derived protons. The kinetics of this reaction is extremely slow. However, this behavior contrasts with extreme corrosion observed in anoxic environments, demonstrating that biological processes play an important role in iron and steel corrosion. Therefore, among the different corrosion mechanisms, microbiologically influenced corrosion (MIC) is the most common and the most closely related to the complex processes connected with microorganism activity. Biocorrosion is a well-established, highly destructive phenomenon, and MIC can accelerate the deterioration of metal, plastics, stone, concrete, and wood, leading to human and environmental risks as well as substantial economic losses, which make MIC an important research topic. It is estimated that 20% or more of corrosion losses can be attributed to MIC. The main types of bacteria associated with corrosion are SRB, SRA, NRB, APB, IOB, IRB, SOB, and bacteria-producing organic acids, exopolymers, or slime. MIC is always associated with biofilm. Although classical corrosion theories can explain some MIC phenomena, the limitations of these mechanisms are exposed when MIC becomes a serious concern in real industrial applications. With increasingly more research on corrosive bacteria, people have a more comprehensive and in-depth understanding of the mechanism of MIC. In this work, the species and characteristics of microorganisms easily leading to corrosion are analyzed, such as sulfate-reducing bacteria, nitrate-reducing bacteria, and iron-oxidizing bacteria. Different mechanisms of MIC are discussed using the concepts of bioenergetics, electron transfer theories, and respiration types. The latest research progress on the microbial corrosion mechanism, including extracellular electron transport, metabolite corrosion, and the concentration differential battery, was reviewed. The process of microbial corrosion often involves more than one mechanism. Different microorganisms grow in different environments, and their metabolic processes differ. Therefore, obtaining a unified corrosion mechanism is difficult, so we can only judge which mechanism plays the main role according to the specific situation. This review provides theoretical guidance for the diagnosis, prediction, and prevention of microbial corrosion under anaerobic and aerobic conditions in the industry.
-
圖 1 SRB 從金屬到細胞表面電子傳遞的方法。(a)外膜結合的氧化還原活性蛋白與基體導體表面直接接觸;(b)導電菌毛與導體表面接觸;(c)通過氧化和還原循環的氧化還原活性電子介質介導的氧化電子轉移
Figure 1. Methods of electron transfer of SRB from metal to cell surface: (a) outer membrane-bound REDOX active protein in direct contact with substrate conductor surface, such as cytochrome C; (b) conductive pili in contact with conductor surface; (c) oxidation electron transfer mediated by REDOX active electron media through oxidation and reduction cycles
www.77susu.com -
參考文獻
[1] Procópio L. The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol, 2019, 35(5): 73 doi: 10.1007/s11274-019-2647-4 [2] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China. NPJ Mater Degrad, 2017, 1: 4 doi: 10.1038/s41529-017-0005-2 [3] Wang Z, Feng Z, Zhang L, et al. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels. Chin J Eng, 2020, 42(5): 549王竹, 馮喆, 張雷, 等. 電化學方法在不銹鋼腐蝕研究中的應用現狀及發展趨勢. 工程科學學報, 2020, 42(5):549 [4] P?aza G, Achal V. Biosurfactants: Eco-friendly and innovative biocides against biocorrosion. Int J Mol Sci, 2020, 21(6): 2152 doi: 10.3390/ijms21062152 [5] Chen X, Li S B, Zheng Z S, et al. Microbial corrosion behavior of X70 pipeline steel in an artificial solution for simulation of soil corrosivity at Daqing area. J Chin Soc Corros Prot, 2020, 40(2): 175 doi: 10.11902/1005.4537.2019.030陳旭, 李帥兵, 鄭忠碩, 等. X70管線鋼在大慶土壤環境中微生物腐蝕行為研究. 中國腐蝕與防護學報, 2020, 40(2):175 doi: 10.11902/1005.4537.2019.030 [6] Al-Moniee M A, Juhler S, S?rensen K, et al. Laboratory-scale evaluation of single analyte bacterial monitoring strategies in water injection systems. J Sens Technol, 2016, 6(2): 11 doi: 10.4236/jst.2016.62002 [7] Li H B,Yang C T, Zhou E Z, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine. Pseudomonas aeruginosa biofilm J Mater Sci Technol, 2017, 33(12): 1596 [8] Rasheed P A, Jabbar K A, Rasool K, et al. Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. Corros Sci, 2019, 148: 397 doi: 10.1016/j.corsci.2018.12.028 [9] Cai H Y, Wang P, Zhang D, et al. An intelligent self-defensive coating based on sulfide ion responsive nanocontainers for suppression of microbiologically influenced corrosion induced by sulfate reducing bacteria. Corros Sci, 2021, 188: 109543 doi: 10.1016/j.corsci.2021.109543 [10] Zhang L. Study on the Preparation and Performance of Surface Antibacterial Stainless Steels [Dissertation]. Nanjing: Southeast University, 2021張磊. 表面抗菌不銹鋼的制備及性能研究[學位論文]. 南京: 東南大學, 2021 [11] Zhuk I, Jariwala F, Attygalle A B, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano, 2014, 8(8): 7733 doi: 10.1021/nn500674g [12] Taubes G. The bacteria fight back. Science, 2008, 321(5887): 356 doi: 10.1126/science.321.5887.356 [13] Bhat S, Kumar B, Prasad S R, et al. Failure of a new 8-in pipeline from group gathering station to central tank farm. Mater Perform, 2011, 50(5): 50 [14] Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels. J Chin Soc Corros Prot, 2019, 39(1): 9 doi: 10.11902/1005.4537.2018.147史顯波, 楊春光, 嚴偉, 等. 管線鋼的微生物腐蝕. 中國腐蝕與防護學報, 2019, 39(1):9 doi: 10.11902/1005.4537.2018.147 [15] Little B J, Lee J S. Microbiologically influenced corrosion: An update. Int Mater Rev, 2014, 59(7): 384 doi: 10.1179/1743280414Y.0000000035 [16] Kannan P, Su S S, Mannan M S, et al. A review of characterization and quantification tools for microbiologically influenced corrosion in the oil and gas industry: Current and future trends. Ind Eng Chem Res, 2018, 57(42): 13895 doi: 10.1021/acs.iecr.8b02211 [17] Khouzani K M, Bahrami A, Hosseini-Abari A, et al. Microbiologically influenced corrosion of a pipeline in a petrochemical plant. Metals, 2019, 9(4): 459 doi: 10.3390/met9040459 [18] Rhoads W J, Pruden A, Edwards M A. Interactive effects of corrosion, copper, and chloramines on legionella and mycobacteria in hot water plumbing. Environ Sci Technol, 2017, 51(12): 7065 doi: 10.1021/acs.est.6b05616 [19] Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corros Sci, 2014, 87: 460 doi: 10.1016/j.corsci.2014.07.009 [20] Berndt M L. Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Constr Build Mater, 2011, 25(10): 3893 doi: 10.1016/j.conbuildmat.2011.04.014 [21] Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation. Corros Sci, 2008, 50(10): 2816 doi: 10.1016/j.corsci.2008.07.008 [22] Maruthamuthu S, Dhandapani P, Kamalasekaran S, et al. Role of ureolytic bacteria on corrosion behavior of fretted grade 880 mild steel rail. Eng Fail Anal, 2013, 33: 315 doi: 10.1016/j.engfailanal.2013.05.021 [23] Maruthamuthu S, Tharmalingam N, Balakrishnan A, et al. Microbiologically influenced corrosion on rails. Curr Sci, 2010, 100(6): 870 [24] Jia R, Li Y C, Al-Mahamedh H H, et al. Enhanced biocide treatments with D-amino acid mixtures against a biofilm consortium from a water cooling tower. Front Microbiol, 2017, 8: 1538 doi: 10.3389/fmicb.2017.01538 [25] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. Corros Sci, 2009, 51(8): 1584 [26] Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view. Ocean Eng, 2013, 70: 188 doi: 10.1016/j.oceaneng.2013.05.005 [27] Jia R, Yang D Q, Xu D K, et al. Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Sci Rep, 2017, 7: 6946 doi: 10.1038/s41598-017-07312-7 [28] Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger. Int Biodeterior Biodegrad, 2016, 115: 1 doi: 10.1016/j.ibiod.2016.07.009 [29] Flitton M, Yoder T. Twelve year study of underground corrosion of activated metals [J/OL]. Sciencepaper Online (2012-03-01) [2022-04-20].https://www.osti.gov/biblio/1056083 [30] Jacobson G. Corrosion at Prudhoe Bay-A lesson on the line. Mater Perform, 2007, 46(8): 26 [31] Parthipan P, AlSalhi M S, Devanesan S, et al. Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment. Bioprocess Biosyst Eng, 2021, 44(7): 1441 doi: 10.1007/s00449-021-02524-8 [32] Chan K Y, Xu L C, Fang H H P. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria. Environ Sci Technol, 2002, 36(8): 1720 doi: 10.1021/es011187c [33] Qian H C. Study on Microbiologically Influenced Corrosion Behavior and Mechanism of Typical Steel and Iron Materials by Halophilic Archaea in High Salinity Environment [Dissertation]. Beijing: University of Science and Technology Beijing, 2019錢鴻昌. 高鹽環境典型鋼鐵材料嗜鹽古菌微生物腐蝕行為機理研究[學位論文]. 北京: 北京科技大學, 2019 [34] Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros Sci, 2013, 77: 385 [35] Tan J L, Goh P C, Blackwood D J. Influence of H2S-producing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens. Corros Sci, 2017, 119: 102 doi: 10.1016/j.corsci.2017.02.014 [36] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 2016, 110: 52 doi: 10.1016/j.bioelechem.2016.03.003 [37] Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochimica Acta, 2008, 54(1): 22 doi: 10.1016/j.electacta.2008.04.085 [38] Chandrasatheesh C, Jayapriya J, George R P, et al. Detection and analysis of microbiologically influenced corrosion of 316 L stainless steel with electrochemical noise technique. Eng Fail Anal, 2014, 42: 133 doi: 10.1016/j.engfailanal.2014.04.002 [39] Okabe S, Odagiri M, Ito T, et al. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol, 2007, 73(3): 971 doi: 10.1128/AEM.02054-06 [40] Chamritski I G, Burns G R, Webster B J, et al. Effect of iron-oxidizing bacteria on pitting of stainless steel. Corrosion, 2004, 60(7): 658 doi: 10.5006/1.3287842 [41] Ching T H, Yoza B A, Wang R J, et al. Biodegradation of biodiesel and microbiologically induced corrosion of 1018 steel by Moniliella wahieum Y12. Int Biodeterior Biodegrad, 2016, 108: 122 doi: 10.1016/j.ibiod.2015.11.027 [42] Jia R, Yang D Q, Li Y C, et al. Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D. Int Biodeterior Biodegrad, 2017, 117: 97 doi: 10.1016/j.ibiod.2016.12.001 [43] San N O, Naz?r H, D?nmez G. Evaluation of microbiologically influenced corrosion inhibition on Ni-Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corros Sci, 2012, 65: 113 [44] Aktas D F, Sorrell K R, Duncan K E, et al. Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments: The impact of different ultra low sulfur diesels and bioaugmentation. Int Biodeterior Biodegrad, 2017, 118: 45 doi: 10.1016/j.ibiod.2016.12.013 [45] Silva P, Oliveira S H, Vinhas G M, et al. Tetrakis hydroxymethyl phosphonium sulfate (THPS) with biopolymer as strategy for the control of microbiologically influenced corrosion in a dynamic system. Chem Eng Process Process Intensif, 2021, 160: 108272 doi: 10.1016/j.cep.2020.108272 [46] Flemming H C. EPS-then and now. Microorganisms, 2016, 4(4): 41 doi: 10.3390/microorganisms4040041 [47] Jia R, Yang D Q, Al-Mahamedh H H, et al. Electrochemical testing of biocide enhancement by a mixture of d-amino acids for the prevention of a corrosive biofilm consortium on carbon steel. Ind Eng Chem Res, 2017, 56(27): 7640 doi: 10.1021/acs.iecr.7b01534 [48] Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nat Rev Microbiol, 2008, 6(3): 199 doi: 10.1038/nrmicro1838 [49] AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80). Int Biodeterior Biodegrad, 2013, 78: 34 doi: 10.1016/j.ibiod.2012.10.014 [50] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci, 2008, 50(4): 1169 doi: 10.1016/j.corsci.2007.11.032 [51] Liu W. Rapid MIC attack on 2205 duplex stainless steel pipe in a yacht. Eng Fail Anal, 2014, 42: 109 doi: 10.1016/j.engfailanal.2014.04.001 [52] San N O, Naz?r H, D?nmez G. Microbially influenced corrosion and inhibition of nickel–zinc and nickel–copper coatings by Pseudomonas aeruginosa. Corros Sci, 2014, 79: 177 [53] Abdoli L, Huang J, Li H. Electrochemical corrosion behaviors of aluminum-based marine coatings in the presence of Escherichia coli bacterial biofilm. Mater Chem Phys, 2016, 173: 62 doi: 10.1016/j.matchemphys.2016.01.038 [54] Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. J Mater Sci Technol, 2018, 34(10): 1713 doi: 10.1016/j.jmst.2018.02.023 [55] Eckert R B. Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry. Corros Eng Sci Technol, 2015, 50(3): 163 doi: 10.1179/1743278214Y.0000000248 [56] Song X Q, Yang Y X, Yu D L, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines. J Petroleum Sci Eng, 2016, 146: 803 doi: 10.1016/j.petrol.2016.07.035 [57] Matias P M, Pereira I A C, Soares C M, et al. Sulphate respiration from hydrogen in Desulfovibrio bacteria: A structural biology overview. Prog Biophys Mol Biol, 2005, 89(3): 292 doi: 10.1016/j.pbiomolbio.2004.11.003 [58] Javaherdashti R. A review of some characteristics of MIC caused by sulfate-reducing bacteria: Past, present and future. Anti Corros Methods Mater, 1999, 46(3): 173 doi: 10.1108/00035599910273142 [59] Lv M Y, Du M. A review: Microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Rev Environ Sci Biotechnol, 2018, 17(3): 431 doi: 10.1007/s11157-018-9473-2 [60] Stetter K O, Huber R, Bl?chl E, et al. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 1993, 365(6448): 743 doi: 10.1038/365743a0 [61] Li Q Q, Lu L, Xiao K. Study on fungi community of coating surface in tropical rainforest. Surf Technol, 2021, 50(7): 295 doi: 10.16490/j.cnki.issn.1001-3660.2021.07.031劉倩倩, 盧琳, 肖葵. 熱帶雨林環境中涂鍍層表面的真菌群落研究. 表面技術, 2021, 50(7):295 doi: 10.16490/j.cnki.issn.1001-3660.2021.07.031 [62] Ilhan-Sungur E, Ozuolmez D, ?otuk A, et al. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel. Anaerobe, 2017, 43: 27 doi: 10.1016/j.anaerobe.2016.11.005 [63] Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater. Corros Sci, 2017, 118: 12 doi: 10.1016/j.corsci.2017.01.005 [64] Tambe S P, Jagtap S D, Chaurasiya A K, et al. Evaluation of microbial corrosion of epoxy coating by using sulphate reducing bacteria. Prog Org Coat, 2016, 94: 49 doi: 10.1016/j.porgcoat.2016.01.009 [65] Tran T T T, Kannoorpatti K, Padovan A, et al. Sulphate-reducing bacteria's response to extreme pH environments and the effect of their activities on microbial corrosion. Appl Sci, 2021, 11(5): 2201 doi: 10.3390/app11052201 [66] Thauer R K, Stackebrandt E, Hamilton W A. Energy Metabolism and Phylogenetic Diversity of Sulphate-Reducing Bacteria. Cambridge: Cambridge University Press, 2007 [67] Li Y J, Zhang D. Study on corrosion behaviors of Q235 carbon steel by sulfate-reducing bacteria in aerobic condition. Total Corros Contr, 2012, 26(5): 23 doi: 10.3969/j.issn.1008-7818.2012.05.011李永娟, 張盾. Q235鋼在含硫酸鹽還原菌的有氧環境中腐蝕行為的研究. 全面腐蝕控制, 2012, 26(5):23 doi: 10.3969/j.issn.1008-7818.2012.05.011 [68] Jia R, Yang D Q, Xu D K, et al. Carbon steel biocorrosion at 80?℃ by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corros Sci, 2018, 145: 47 doi: 10.1016/j.corsci.2018.09.015 [69] Barton L L, Tomei F A. Characteristics and activities of sulfate-reducing bacteria. [in] Barton L L. Sulfate-Reducing Bacteria. Boston: Springer, 1995 [70] Li Y P, Zhu S D, Li J L, et al. Research progress of H2S/CO2 corrosion and protection technology for oil and gas tubing. Corros Protec, 2022, 43(6): 1 doi: 10.11973/fsyfh-202206001李彥鵬, 朱世東, 李金靈, 等. 油氣管道H2S/CO2腐蝕與防護技術研究進展. 腐蝕與防護, 2022, 43(6):1 doi: 10.11973/fsyfh-202206001 [71] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes. Int Biodeterior Biodegrad, 2014, 93: 84 doi: 10.1016/j.ibiod.2014.05.007 [72] Fida T T, Chen C, Okpala G, et al. Implications of limited thermophilicity of nitrite reduction for control of sulfide production in oil reservoirs. Appl Environ Microbiol, 2016, 82(14): 4190 doi: 10.1128/AEM.00599-16 [73] Jia R, Yang D Q, Xu D K, et al. Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm. Front Microbiol, 2017, 8: 2335 doi: 10.3389/fmicb.2017.02335 [74] Wan H X, Song D D, Zhang D W, et al. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 2018, 121: 18 doi: 10.1016/j.bioelechem.2017.12.011 [75] Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 118: 38 doi: 10.1016/j.bioelechem.2017.06.013 [76] Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion. J Microb Biochem Technol, 2014, 6(2): 68 [77] Kryachko Y, Hemmingsen S M. The role of localized acidity generation in microbially influenced corrosion. Curr Microbiol, 2017, 74(7): 870 doi: 10.1007/s00284-017-1254-6 [78] Gu T Y, Rastegar S O, Mousavi S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour Technol, 2018, 261: 428 doi: 10.1016/j.biortech.2018.04.033 [79] Dong Y Q, Jiang B T, Xu D K, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 2018, 123: 34 doi: 10.1016/j.bioelechem.2018.04.014 [80] Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corros Sci, 2014, 89: 250 [81] Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corros Sci, 2016, 102: 93 doi: 10.1016/j.corsci.2015.09.023 [82] Liu H F, Zheng B J, Xu D D, et al. Effect of sulfate-reducing bacteria and iron-oxidizing bacteria on the rate of corrosion of an aluminum alloy in a central air-conditioning cooling water system. Ind Eng Chem Res, 2014, 53(19): 7840 doi: 10.1021/ie4033654 [83] Xu C M, Zhang Y H, Cheng G X, et al. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria. Mater Charact, 2008, 59(3): 245 doi: 10.1016/j.matchar.2007.01.001 [84] Daniels L, Belay N, Rajagopal B S, et al. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science, 1987, 237(4814): 509 doi: 10.1126/science.237.4814.509 [85] Dinh H T, Kuever J, Mu?mann M, et al. Iron corrosion by novel anaerobic microorganisms. Nature, 2004, 427(6977): 829 doi: 10.1038/nature02321 [86] Conlette O C, Emmanuel N E, Olukayode A O. Factors that influence methanogenic activities in a low sulfate oil-producing facility. Petroleum Sci Technol, 2018, 36(9-10): 688 doi: 10.1080/10916466.2018.1443124 [87] Thauer R K, Kaster A K, Goenrich M, et al. Hydrogenases from methanogenic Archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem, 2010, 79: 507 doi: 10.1146/annurev.biochem.030508.152103 [88] Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater. J Chin Soc Corros Prot, 2020, 40(5): 389 doi: 10.11902/1005.4537.2019.212王玉, 吳佳佳, 張盾. 海水環境中異化鐵還原菌所致金屬材料腐蝕的研究進展. 中國腐蝕與防護學報, 2020, 40(5):389 doi: 10.11902/1005.4537.2019.212 [89] Black E, Owens K, Staub R, et al. Evaluation of AISI Type 304 stainless steel as a suitable surface material for evaluating the efficacy of peracetic acid-based disinfectants against Clostridium difficile spores. PLoS One, 2017, 12(10): e0187074 doi: 10.1371/journal.pone.0187074 [90] Zhang D, Wu J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment. Oceanol Limnol Sin, 2020, 51(4): 821 doi: 10.11693/hyhz20200300061張盾, 吳佳佳. 海洋環境微生物腐蝕機理研究進展. 海洋與湖沼, 2020, 51(4):821 doi: 10.11693/hyhz20200300061 [91] Ma C, Chen C G, Jiang X B, et al. Distribution characteristics of marine bacteria in the China seas. Med J Chin PLA, 2012, 37: 909馬聰, 陳昌國, 蔣學兵, 等. 中國海域海洋細菌分布特征分析. 解放軍醫學雜志, 2012, 37:909 [92] Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater. Corros Sci, 2015, 98: 249 doi: 10.1016/j.corsci.2015.05.038 [93] Li X X, Liu J F, Yao F, et al. Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. Int Biodeterior Biodegrad, 2016, 114: 45 doi: 10.1016/j.ibiod.2016.05.018 [94] Beeder J, Nilsen R K, Rosnes J T, et al. Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol, 1994, 60(4): 1227 doi: 10.1128/aem.60.4.1227-1231.1994 [95] Gu T Y. New understandings of biocorrosion mechanisms and their classifications. J Microb Biochem Technol, 2012, 4(4): 3 [96] Huang Y, Zhou E Z, Jiang C Y, et al. Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochem Commun, 2018, 94: 9 [97] Wang S Q, Qiu L, Liu X W, et al. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol Adv, 2018, 36(4): 1194 doi: 10.1016/j.biotechadv.2018.03.018 [98] Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J Mater Sci Technol, 2019, 35(4): 631 doi: 10.1016/j.jmst.2018.10.026 [99] Huang L Y, Huang Y, Lou Y T, et al. Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa. Corros Sci, 2020, 164: 108355 [100] Wang D, Liu J L, Jia R, et al. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros Sci, 2020, 177: 108993 doi: 10.1016/j.corsci.2020.108993 [101] Beese-Vasbender P F, Nayak S, Erbe A, et al. Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta, 2015, 167: 321 doi: 10.1016/j.electacta.2015.03.184 [102] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435(7045): 1098 doi: 10.1038/nature03661 [103] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci, 2011, 53(3): 955 doi: 10.1016/j.corsci.2010.11.027 [104] Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrosion of metal from the perspective of bio-electrochemistry and bio-energetics. Chin J Mater Res, 2016, 30(3): 161夏進, 徐大可, 南黎, 等. 從生物能量學和生物電化學角度研究金屬微生物腐蝕的機理. 材料研究學報, 2016, 30(3):161 [105] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015, 101: 14 doi: 10.1016/j.bioelechem.2014.06.010 [106] Han X M, Dou W W, Pu Y N, et al. Microbiologically influenced corrosion mechanism of aluminum by Desulfovibrio vulgaris. Surf Technol, 2020, 49(7): 255韓曉梅, 竇雯雯, 蒲亞男, 等. 脫硫弧菌引起的鋁的微生物腐蝕機理研究. 表面技術, 2020, 49(7): 255 [107] Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros Sci, 2019, 150: 258 doi: 10.1016/j.corsci.2019.02.005 [108] Liu H Y, Li L, Liu X Y, et al. Stress corrosion behavior of 7075 aluminum alloy by heating aging treatment in simulated seawater containing SRB. Mater Sci Technol, 2021, 29(4): 45 doi: 10.11951/j.issn.1005-0299.20200282劉慧瑤, 李亮, 劉馨憶, 等. 升溫時效處理7075鋁合金在含SRB模擬海水中的應力腐蝕行為. 材料科學與工藝, 2021, 29(4):45 doi: 10.11951/j.issn.1005-0299.20200282 [109] Weronika D, Michal M, Robert P S et al. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies. Mater Chem Phys, 2017, 195: 28 doi: 10.1016/j.matchemphys.2017.04.011 [110] Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros Sci, 2018, 130: 1 doi: 10.1016/j.corsci.2017.10.023 [111] Gao S J, Brown B, Young D, et al. Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corros Sci, 2018, 135: 167 doi: 10.1016/j.corsci.2018.02.045 [112] Fu W J, Li Y C, Xu D K, et al. Comparing two different types of anaerobic copper biocorrosion by sulfate- and nitrate-reducing bacteria. Mater Perform, 2014, 53(6): 66 [113] Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corros Sci, 2018, 144: 237 doi: 10.1016/j.corsci.2018.08.055 [114] Li J. Microbiologically Influenced Corrosion Behavior and Mechanism of X80 Pipeline Steel by Nitrate-Reducing Bacterium, Bacillus Licheniformis [Dissertation]. Beijing: University of Science and Technology Beijing, 2020李軍. X80管線鋼硝酸鹽還原菌Bacillus licheniformis腐蝕行為與機理[學位論文]. 北京: 北京科技大學, 2020 [115] Sun F Y, Yang Y, Cao B. Effect of SRB+IOB on corrosion behavior of X100 pipeline steel in simulated solution of ku'erle soil. Pipeline Tech Equip, 2019(4): 55 doi: 10.3969/j.issn.1004-9614.2019.04.015孫福洋, 楊陽, 曹博. 庫爾勒土壤模擬溶液中SRB+IOB對X100管線鋼腐蝕行為的影響. 管道技術與設備, 2019(4):55 doi: 10.3969/j.issn.1004-9614.2019.04.015 [116] Rajasekar A, Ganesh Babu T, Karutha Pandian S, et al. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corros Sci, 2007, 49(6): 2694 doi: 10.1016/j.corsci.2006.12.004 [117] Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G. The effect of Pseudoxanthomonas sp. as Manganese oxidizing bacterium on the corrosion behavior of carbon steel. Mater Sci Eng C, 2012, 32(2): 303 [118] Li Y X, Gong A J. Progress in studies on microbiologically influenced corrosion by sulfate-reducing bacteria. Total Corros Contr, 2005, 19(1): 30 doi: 10.3969/j.issn.1008-7818.2005.01.010李迎霞, 弓愛君. 硫酸鹽還原菌微生物腐蝕研究進展. 全面腐蝕控制, 2005, 19(1):30 doi: 10.3969/j.issn.1008-7818.2005.01.010 [119] Skovhus T L, Enning D, Lee J S. Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry. Boca Raton: CRC Press, 2017 [120] Abdolahi A, Hamzah E, Ibrahim Z, et al. Localised corrosion of mild steel in presence of Pseudomonas aeruginosa biofilm. Corros Eng Sci Technol, 2015, 50(7): 538 doi: 10.1179/1743278215Y.0000000003 [121] Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. Int Biodeterior Biodegrad, 2019, 137: 42 doi: 10.1016/j.ibiod.2018.11.007 [122] Lyu M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion. Surf Technol, 2019, 48(11): 59 doi: 10.16490/j.cnki.issn.1001-3660.2019.11.006呂美英, 李振欣, 杜敏, 等. 微生物腐蝕中生物膜的生成、作用與演變. 表面技術, 2019, 48(11):59 doi: 10.16490/j.cnki.issn.1001-3660.2019.11.006 [123] Dierksen D, Kühner P, Kappler A, et al. Microbial corrosion of silicon nitride ceramics by sulphuric acid producing bacteria Acidithiobacillus ferrooxidans. J Eur Ceram Soc, 2011, 31(6): 1177 [124] Qu Q, He Y, Wang L, et al. Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2. Corros Sci, 2015, 91: 321 doi: 10.1016/j.corsci.2014.11.032 [125] Stamps B W, Bojanowski C L, Drake C A, et al. In situ linkage of fungal and bacterial proliferation to microbiologically influenced corrosion in B20 biodiesel storage tanks. Front Microbiol, 2020, 11: 167 doi: 10.3389/fmicb.2020.00167 [126] Landoulsi J, Cooksey K E, Dupres V. Review-Interactions between diatoms and stainless steel: Focus on biofouling and biocorrosion. Biofouling, 2011, 27(10): 1105 doi: 10.1080/08927014.2011.629043 [127] Finnegan M, Linley E, Denyer S P, et al. Mode of action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas forms. J Antimicrob Chemother, 2010, 65(10): 2108 doi: 10.1093/jac/dkq308 [128] Maisetta G, Grassi L, Esin S, et al. The semi-synthetic peptide Lin-SB056-1 in combination with EDTA exerts strong antimicrobial and antibiofilm activity against Pseudomonas aeruginosa in conditions mimicking cystic fibrosis sputum. Int J Mol Sci, 2017, 18(9): 1994 doi: 10.3390/ijms18091994 [129] Qiu L N, Mao Y N, Gong A J, et al. Inhibition effect of Bdellovibrio bacteriovorus on the corrosion of X70 pipeline steel induced by sulfate-reducing bacteria. Anti Corros Methods Mater, 2016, 63(4): 269 doi: 10.1108/ACMM-10-2014-1447 -