Effect of casting speed rising on the cleanliness of IF steel slab during the initial casting stage
-
摘要: IF鋼連鑄開澆過程頭坯潔凈度水平較低,目前各企業一般將開澆坯作判廢或降級處理,這導致了產品質量不穩定,成材率低等問題。為研究IF鋼非穩態開澆階段連鑄坯的潔凈度水平及優化措施,采用現場取樣、檢測分析及數值模擬計算相結合的方法,分析了IF鋼開澆階段不同拉速變化曲線條件下連鑄坯沿拉坯方向的潔凈度變化規律。通過實驗檢測發現沿拉坯方向頭坯T[O]、[N]及顯微夾雜物含量呈現明顯下降趨勢,距離頭坯頭部6 m處 T[O]含量為13×10?6,接近正常坯水平,距離頭坯頭部7 m處 [N]含量約為19×10?6,接近正常坯水平,開澆工藝對于連鑄坯T[O]、[N]及顯微夾雜物含量影響不大。勻速、前快后慢和前慢后快三種拉速工藝條件下,大型夾雜物在距離頭坯頭部2 m處的質量分數約為0.2 mg?kg?1,但之后均存在不同程度的大型夾雜物數量波動現象,而前快后慢工藝影響范圍最小,在5.5 m后均達到正常水平。通過數值計算同樣發現,前快后慢的提拉速工藝條件下產生的頭坯潔凈度更快地接近正常坯潔凈度水平(約開澆430 s后,對應拉坯5 m)。基于本文研究,提出了一種優化的IF鋼連鑄開澆過程提拉速的工藝方法。Abstract: During the initial casting stage of the IF steel, the cleanliness of the first slab deteriorates. Steel plants treat the initial casting slabs as waste or demoting products. Moreover, the cleanliness deterioration of initial casting slabs leads to unstable quality and low product yield. In the present study, to investigate the cleanliness of continuous casting slabs and the optimization measures during the initial casting stage of the IF steel, the cleanliness of the initial casting slabs is evaluated by field sampling and experimental analysis. Moreover, the effect of the casting speed rising method on the cleanliness of the IF steel slab during the initial casting stage is investigated. Additionally, numerical simulations are conducted to reveal the level of fluctuations of the molten steel in the mold during the initial casting stage. The results show that the variations in T[O], [N], and the content of microinclusions in the slab decrease obviously along the casting direction. The contents of T[O] and [N] in the slab reach the normal slab level of 6 m (approximately 13×10?6) and 7 m (approximately 19×10?6) away from the dummy bar head, respectively. Nevertheless, the effects of the casting speed rising method on the contents of T[O], [N], and microinclusions in the initial casting slabs are inapparent during the open casting process. For the three conditions of open casting (different casting speed rising methods), the contents of the macroinclusions in the slab reach the normal slab level of around 2 m (approximately 2 mg/10 kg) away from the dummy bar head, respectively. Subsequently, the fluctuation of the macroinclusion content can be determined. Furthermore, under the condition of “quick-slow” casting speed rising, the fluctuation can be quickly alleviated, and the macroinclusion content normalizes. Numerical simulations reveal that the variations in the fluctuation level of the molten steel at different positions (near the nozzle, a quarter of the width, and near the narrow face) in the mold during the initial casting stage of the three casting speed rising modes are similar. First, the fluctuation level is extremely intense. Then, the fluctuation level gradually weakens for some time. Finally, the fluctuation level of the molten steel at different positions in the mold stabilizes. Additionally, the numerical simulation results reveal that the slab cleanliness can quickly normalize (430 s after initial casting and about 5 m away from the dummy bar head) under the “quick-slow” casting speed rising mode during the initial casting stage.
-
Key words:
- IF steel /
- continuous casting slab /
- initial casting stage /
- casting speed /
- cleanliness
-
表 1 IF鋼中間包鋼水樣化學成分(質量分數)
Table 1. Chemical components of IF steel samples obtained in the tundish(mass fraction)
% Heat Elevating speed method C Si Mn P S Alt Ti O N A Uniform 0.0008 0.0048 0.050 0.013 0.0063 0.0388 0.0588 0.0016 0.0016 B Fast and then slow 0.0010 0.0040 0.052 0.013 0.0066 0.0371 0.0579 0.0019 0.0015 C Slow and then fast 0.0008 0.0049 0.038 0.012 0.0061 0.0347 0.0597 0.0017 0.0017 www.77susu.com -
參考文獻
[1] Cui D L, Wang X J, Jin S T. History and development of extra low carbon steel. Research Iron Steel, 1994, 22(5): 50崔德理, 王先進, 金山同. 超低碳鋼的歷史與發展. 鋼鐵研究, 1994, 22(5):50 [2] Zhang L F, Li Y L, Ren Y. Fundamentals of non-metallic inclusions in steel: Part I. Control of unsteady casting and big Inclusions, nucleation, motion, removal and capture of inclusions in molten steel. Iron Steel, 2013, 48(11): 1張立峰, 李燕龍, 任英. 鋼中非金屬夾雜物的相關基礎研究(I)—非穩態澆鑄中的大顆粒夾雜物及夾雜物的形核、長大、運動、去除和捕捉. 鋼鐵, 2013, 48(11): 1 [3] Deng X X, Ji C X, Zhu G S, et al. Quantitative evaluations of surface cleanliness in IF steel slabs at unsteady casting. Metall Mater Trans B, 2019, 50(4): 1974 doi: 10.1007/s11663-019-01589-x [4] Li L P, Wang X H, Deng X X, et al. Discussion on some typical phenomena during unsteady casting process. Steel Res Int, 2016, 87(7): 829 doi: 10.1002/srin.201500468 [5] Zhu G S, Wang X H, Deng X X, et al. Quantitative research on cleanliness of unsteady continuously cast slabs. Steelmaking, 2013, 29(6): 41 doi: 10.3969/j.issn.1002-1043.2013.06.011朱國森, 王新華, 鄧小旋, 等. 非穩態連鑄坯潔凈度的定量研究. 煉鋼, 2013, 29(6):41 doi: 10.3969/j.issn.1002-1043.2013.06.011 [6] Le?o P B P, Klug J L, de Abreu H F G, et al. Sliver defects in an ultra-low carbon Al-killed steel caused by low steel level in the tundish. Ironmak Steelmak, 2021, 48(8): 978 doi: 10.1080/03019233.2020.1848306 [7] Xu R, Ling H T, Wang H J, et al. Investigation on the effects of ladle change operation and tundish cover powder on steel cleanliness in a continuous casting tundish. Steel Res Int, 2021, 92(10): 2100072 doi: 10.1002/srin.202100072 [8] Yuan F M, Wang X H, Li H, et al. Cleanliness of interstitial-free steel slabs produced in different casting stages. J Univ Sci Technol Beijing, 2005, 24(4): 436 doi: 10.13374/j.issn1001-053x.2005.04.012袁方明, 王新華, 李宏, 等. 不同澆鑄階段IF鋼連鑄板坯潔凈度. 北京科技大學學報, 2005, 24(4):436 doi: 10.13374/j.issn1001-053x.2005.04.012 [9] Zhang Q Y, Wang X H, Zhang L. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int, 2006, 46(10): 1421 doi: 10.2355/isijinternational.46.1421 [10] Chen Z P. Study on the Control of Continuous Casting Slab Quality under Unsteady Casting Conditions [Dissertation]. Shenyang: Northeastern University, 2008陳志平. 非穩態澆鑄條件下連鑄板坯質量控制研究[學位論文]. 沈陽: 東北大學, 2008 [11] Zhang Q Y, Wang X H. Numerical simulation of influence of casting speed variation on surface fluctuation of molten steel in mold. J Iron Steel Res Int, 2010, 17(8): 15 doi: 10.1016/S1006-706X(10)60121-5 [12] Gao P, Tian Z H, Cui Y, et al. Research on cleanness of IF steel slab produced in unsteady casting process. Iron Steel, 2012, 47(7): 31 doi: 10.13228/j.boyuan.issn0449-749x.2012.07.015高攀, 田志紅, 崔陽, 等. IF鋼非穩態澆鑄鑄坯潔凈度分析. 鋼鐵, 2012, 47(7):31 doi: 10.13228/j.boyuan.issn0449-749x.2012.07.015 [13] Xiao P C, Zhu L G, Liu H C, et al. Quantitative research on cleanliness of unsteady casted IF steel slabs. Iron Steel Vanadium Titanium, 2017, 38(3): 111 doi: 10.7513/j.issn.1004-7638.2017.03.020肖鵬程, 朱立光, 劉海春, 等. IF鋼非穩態連鑄坯潔凈度定量分析. 鋼鐵釩鈦, 2017, 38(3):111 doi: 10.7513/j.issn.1004-7638.2017.03.020 [14] Liu P, Luo G, Xu G J. Research on the first and last slab cleanness and inclusions evolved of IF steel. Continuous Cast, 2017, 42(6): 36 doi: 10.13228/j.boyuan.issn1005-4006.20170067劉彭, 羅鋼, 徐剛軍. IF鋼夾雜物演變和頭尾坯潔凈度研究. 連鑄, 2017, 42(6):36 doi: 10.13228/j.boyuan.issn1005-4006.20170067 [15] Takahashi K, Ando M, Ishii T. Numerical investigation of unsteady molten steel flow and inclusion behavior in the tundish in the ladle change period. ISIJ Int, 2014, 54(2): 304 doi: 10.2355/isijinternational.54.304 [16] Garcia-Hernandez S, Morales R D, Jesus Barreto J, et al. Modeling study of slag emulsification during ladle change-over using a dissipative ladle shroud. Steel Res Int, 2016, 87(9): 1154 doi: 10.1002/srin.201500299 [17] Wang M, Bao Y, Senk D, et al. Characteristic and evolution of inclusions in Al-Killed titanium alloyed steel during air contact process. Metall Res Technol, 2016, 114(1): 110 [18] Ling H T, Xu R, Wang H J, et al. Multiphase flow behavior in a single-strand continuous casting tundish during ladle change. ISIJ Int, 2020, 60(3): 499 doi: 10.2355/isijinternational.ISIJINT-2019-506 [19] Xu R, Ling H T, Wang H J, et al. Investigation on the control of multiphase flow behavior in a continuous casting tundish during ladle change. Metall Res Technol, 2020, 117(6): 619 doi: 10.1051/metal/2020070 [20] Peng Q C, Yu X S, Xiong W, et al. Studying on cleanliness of low carbon steel slabs produced in different casting stages. China Metall, 2012, 22(8): 17 doi: 10.13228/j.boyuan.issn1006-9356.2012.08.007彭其春, 于學森, 熊偉, 等. 不同澆鑄階段低碳鋼連鑄板坯潔凈度研究. 中國冶金, 2012, 22(8):17 doi: 10.13228/j.boyuan.issn1006-9356.2012.08.007 [21] Chen X, Bao Y P, Li R C, et al. Analysis of cleanliness for IF steel slabs at start of continuous casting. J Iron Steel Res, 2017, 29(4): 281 doi: 10.13228/j.boyuan.issn1001-0963.20160155陳霄, 包燕平, 李任春, 等. IF鋼開澆階段鑄坯潔凈度分析. 鋼鐵研究學報, 2017, 29(4):281 doi: 10.13228/j.boyuan.issn1001-0963.20160155 [22] Liu Z X, Li M, Zhu L G, et al. Study on cleanliness of IF steel first heat of a sequence. Steelmaking, 2017, 33(2): 74劉增勛, 李萌, 朱立光, 等. 汽車用板IF鋼開澆爐次板坯潔凈度的分析. 煉鋼, 2017, 33(2):74 [23] Zhang Z Q. Analysis of surface slivers on cold rolled sheet for the second slab in first heat. Continuous Cast, 2018, 43(1): 77 doi: 10.13228/j.boyuan.issn1005-4006.20170106張正群. 澆次第二塊鑄坯冷軋板表面帶狀缺陷產生原因分析. 連鑄, 2018, 43(1):77 doi: 10.13228/j.boyuan.issn1005-4006.20170106 [24] Huang S Y, Yang J, Li G B, et al. Distribution of inclusions in unsteady slab of thin slab caster. Steelmaking, 2021, 37(5): 67黃淑媛, 楊健, 李廣幫, 等. 薄厚度板坯連鑄機非穩態連鑄坯中夾雜物分布. 煉鋼, 2021, 37(5):67 [25] Zhang Q Y, Wang X H, Zhang L, et al. Influence of casting speed variation on non-metallic inclusions in IF steel slabs. Steelmaking, 2006, 22(6): 21 doi: 10.3969/j.issn.1002-1043.2006.06.007張喬英, 王新華, 張立, 等. 拉速變化對IF鋼鑄坯非金屬夾雜物含量的影響. 煉鋼, 2006, 22(6):21 doi: 10.3969/j.issn.1002-1043.2006.06.007 [26] Yin Y B, Zhang J M, Wang B, et al. Effect of in-mould electromagnetic stirring on the flow, initial solidification and level fluctuation in a slab mould: A numerical simulation study. Ironmak Steelmak, 2019, 46(7): 682 doi: 10.1080/03019233.2018.1454998 [27] Yin Y B, Zhang J M. Mathematical modeling on transient multiphase flow and slag entrainment in continuously casting mold with double-ruler EMBr through LES+VOF+DPM method. ISIJ Int, 2020, 61(3): 853 [28] Yin Y B, Zhang J M. Large eddy simulation of transient transport and entrapment of particle during slab continuous casting. J Iron Steel Res Int, 2022, 29(2): 247 doi: 10.1007/s42243-021-00601-6 -