<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于靜電紡絲法原位極化PVDF納米纖維薄膜構建高效壓電納米發電機

薛優 楊濤 王宏洋 王恩會 周國治 侯新梅

薛優, 楊濤, 王宏洋, 王恩會, 周國治, 侯新梅. 基于靜電紡絲法原位極化PVDF納米纖維薄膜構建高效壓電納米發電機[J]. 工程科學學報, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001
引用本文: 薛優, 楊濤, 王宏洋, 王恩會, 周國治, 侯新梅. 基于靜電紡絲法原位極化PVDF納米纖維薄膜構建高效壓電納米發電機[J]. 工程科學學報, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001
XUE You, YANG Tao, WANG Hong-yang, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning[J]. Chinese Journal of Engineering, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001
Citation: XUE You, YANG Tao, WANG Hong-yang, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning[J]. Chinese Journal of Engineering, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001

基于靜電紡絲法原位極化PVDF納米纖維薄膜構建高效壓電納米發電機

doi: 10.13374/j.issn2095-9389.2022.04.14.001
基金項目: 國家杰出青年基金資助項目(52025041);國家自然科學基金資助項目(51902020);中央高校基本科研業務費資助項目(FRF-IDRY-21-028)
詳細信息
    通訊作者:

    E-mail:yangtaoustb@ustb.edu.cn

  • 中圖分類號: TK6

Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning

More Information
  • 摘要: 全球化石能源危機和環境污染問題使得高效利用綠色、可再生清潔能源成為大勢所趨。機械能因其豐富、易獲取和無污染等特點被認為是理想的替代能源之一。壓電納米發電機(PENG)可以將環境中的機械能轉化為電能,為電子設備提供動力。然而,傳統的壓電材料必須通過電極化誘導偶極子排列才能獲得壓電性能,增加了器件制備的工序和能耗。同時,當去除外加電場時會發生退極化效應,致使壓電材料的性能穩定性下降。通過靜電紡絲法紡絲過程產生的強電場和機械拉伸使聚偏二氟乙烯(PVDF)納米纖維晶體中的偶極子定向排列,從而實現原位極化,獲得了高電活性β相達78.7%的PVDF納米纖維薄膜。基于該薄膜構建的PENG實現了機械能向電能的直接轉化,其開路輸出電壓為1.6 V,短路輸出電流為0.14 μA,分別是旋涂法制備薄膜的4.5和2.6倍。PVDF?PENG通過橋式整流器在人的手指敲打60 s后可將1 μF的電容器充電到2 V。在200 MΩ的外加負載下其最大輸出功率為0.03 μW。PVDF?PENG在連續2000次按壓發電后,仍能保持約100%的輸出能力,驗證了其長期穩定的服役能力。最后PVDF?PENG通過采集手指輕敲的能量可點亮LED燈和驅動電子表,證明了實際應用的能力。

     

  • 圖  1  實驗流程圖. (a) PVDF薄膜的制備; (b) 壓電納米發電機器件的組裝過程

    Figure  1.  Experimental flowchart: (a) preparation process of PVDF fiber film; (b) fabrication process of PENG

    圖  2  樣品在不同條件下的表面形貌. (a) 前驅體的質量分數為10%;(b) 前驅體的質量分數為12%;(c) 前驅體的質量分數為14%;(d) 前驅體的質量分數為16% (其中10、15、20 kV分別為靜電紡絲時設置的電壓值);(e) 旋涂法制備的PVDF薄膜;(f) 旋涂法制備PVDF薄膜的放大圖

    Figure  2.  Surface morphology of the samples: (a) the mass fraction of precursor is 10%; (b) the mass fraction of precursor is 12%; (c) the mass fraction of precursor is 14%; (d) the mass fraction of precursor is 16% (voltages of 10 kV, 15 kV, and 20 kV are used for the electrospinning setting); (e) PVDF films prepared using the spin-coating method; (f) enlarged view of PVDF film prepared by spin-coating method

    圖  3  樣品的物相分析. (a) XRD圖譜;(b) FTIR圖譜

    Figure  3.  Phase analysis of samples: (a) XRD spectrum; (b) FTIR spectrum

    圖  4  PVDF?PENG器件的壓電性能. (a) PVDF?PENG工作原理;(b) 靜電紡絲和旋涂法制備的PVDF薄膜的短路電流;(c) 靜電紡絲和旋涂法制備的PVDF薄膜的開路電壓;(d) 正接和反接時PVDF?PENG的開路電壓;(e) 不同壓力下PVDF?PENG的短路電流

    Figure  4.  Piezoelectric performance of PVDF?PENG devices: (a) working mechanism of PVDF?PENG; (b) short-circuit current of PVDF films prepared using the electrospinning and spin-coating methods; (c) open-circuit voltage of PVDF films prepared using the electrospinning and spin-coating methods; (d) open-circuit voltage of PVDF?PENG under forward and reverse connections; (e) the current density of PVDF–PENG under different stresses

    圖  5  PVDF?PENG 的實際應用探索與穩定性測試. (a) 電容器充電的電路圖;(b) PVDF?PENG為1 μF的電容器充電曲線;(c) PVDF?PENG在不同外負載電阻下的電流;(d) PVDF?PENG在不同外負載電阻下的電流;(e) 在不同外負載電阻下,PVDF?PENG 的電流和電壓變化曲線;(f) 不同外負載電阻下,PVDF?PENG 的功率變化曲線;(g) PVDF?PENG 的穩定性測試

    Figure  5.  Practical application exploration and stability test of PVDF?PENG: (a) circuit diagram of a capacitor being charged; (b) the charging curve of capacitors with PVDF–PENG; (c) the current of PVDF–PENG under different external load resistances; (d) the voltage of PVDF–PENG under different external load resistances; (e) the current and voltage variation curves of PVDF–PENG under different external load resistances; (f) the power variation curve of PVDF–PENG under different external load resistances; (g) stability testing of PVDF–PENG

    圖  6  PVDF?PENG 的實際應用. (a) PVDF?PENG在手指彎曲下的輸出性能; (b) PVDF?PENG在手指叩擊下的輸出性能;(c)點亮6個商用綠色LED燈;(d)點亮一個商業電子表

    Figure  6.  Practical application of PVDF?PENG: (a) output of PVDF–PENG under finger bending; (b) output of PVDF–PENG under finger tapping; (c) the light up of six commercially available green LEDs; (d) the light up of a commercial electronic watch

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lu L J, Ding W Q, Liu J Q, et al. Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 2020, 78: 105251 doi: 10.1016/j.nanoen.2020.105251
    [2] Mokhtari F, Shamshirsaz M, Latifi M, et al. Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers, 2020, 12(11): 2697 doi: 10.3390/polym12112697
    [3] Tuluk A, Mahon T, van der Zwaag S, et al. Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites. J Alloys Compd, 2021, 868: 159186 doi: 10.1016/j.jallcom.2021.159186
    [4] Zhao Q Y, Yang L, Chen K N, et al. Flexible textured MnO2 nanorods/ PVDF hybrid films with superior piezoelectric performance for energy harvesting application. Compos Sci Technol, 2020, 199: 108330 doi: 10.1016/j.compscitech.2020.108330
    [5] Zhou L L, Yang T, Zhu L P, et al. Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83: 105826 doi: 10.1016/j.nanoen.2021.105826
    [6] Maity K, Garain S, Henkel K, et al. Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl Polym Mater, 2020, 2(2): 862 doi: 10.1021/acsapm.9b00846
    [7] Mokhtari F, Spinks G M, Sayyar S, et al. Highly stretchable self‐powered wearable electrical energy generator and sensors. Adv Mater Technol, 2020, 6(2): 2000841
    [8] Su Y J, Chen C X, Pan H, et al. Muscle fibers inspired high‐performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater, 2021, 31(19): 202010962
    [9] Wu W, Wang E H, Yang T, et al. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films. Chin J Eng, 2021, 43(6): 808

    武偉, 王恩會, 楊濤, 等. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能. 工程科學學報, 2021, 43(6):808
    [10] Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci, 2014, 39(4): 683 doi: 10.1016/j.progpolymsci.2013.07.006
    [11] Gregorio R J, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B Polym Phys, 1994, 32(5): 859 doi: 10.1002/polb.1994.090320509
    [12] Sencadas V, Gregorio R, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B, 2009, 48(3): 514 doi: 10.1080/00222340902837527
    [13] Gradys A, Sajkiewicz P, Adamovsky S, et al. Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007, 461(1-2): 153 doi: 10.1016/j.tca.2007.05.023
    [14] Mohajir B E, Heymans N. Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 2001, 42(13): 5661
    [15] Shepelin N A, Glushenkov A M, Lussini V C, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci, 2019, 12(4): 1143 doi: 10.1039/C8EE03006E
    [16] Wu Y, Hsu S L, Honeker C, et al. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B, 2012, 116(24): 7379 doi: 10.1021/jp3043494
    [17] Martins P, Caparros C, Gon?alves R, et al. Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C, 2012, 116(29): 15790 doi: 10.1021/jp3038768
    [18] Bouhamed A, Qin B Y, B?hm B, et al. A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation. Compos Sci Technol, 2021, 208: 108769 doi: 10.1016/j.compscitech.2021.108769
    [19] Ongun M Z, Oguzlar S, Doluel E C, et al. Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J Mater Sci Mater Electron, 2020, 31(3): 1960 doi: 10.1007/s10854-019-02715-w
    [20] Wang Y D, Yang K, Zhang M J, et al. Fabrication of hollow lithium titanate material by electrospinning. Chin J Eng, 2019, 41(1): 111

    王瑜東, 楊凱, 張明杰, 等. 靜電紡絲法制備空心鈦酸鋰材料. 工程科學學報, 2019, 41(1):111
    [21] Yang J, Zhang Y H, Li Y N, et al. Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by In-situ reduction. Mater Today Commun, 2021, 26: 101629 doi: 10.1016/j.mtcomm.2020.101629
    [22] Zheng J F, He A H, Li J X, et al. Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun, 2007, 28(22): 2159 doi: 10.1002/marc.200700544
    [23] Wang S, Shao H Q, Liu Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos Sci Technol, 2021, 202: 108600 doi: 10.1016/j.compscitech.2020.108600
    [24] Chen J, Feng Y, Zhao Z X, et al. Application of electrospinning technology in solid oxide fuel cell. J Chin Ceram Soc, 2021, 49(9): 1861

    陳靜, 馮宇, 趙禎祥, 等. 靜電紡絲技術在固體氧化物燃料電池中的應用. 硅酸鹽學報, 2021, 49(9):1861
    [25] He Z C, Rault F, Lewandowski M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers, 2021, 13(2): 174 doi: 10.3390/polym13020174
    [26] Edmondson D, Cooper A, Jana S, et al. Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. J Mater Chem, 2012, 22(35): 18646 doi: 10.1039/c2jm33877g
    [27] Chen H, Zhou L, Fang Z, et al. Piezoelectric nanogenerator based on In situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv Funct Mater, 2021, 31(19): 2011073 doi: 10.1002/adfm.202011073
    [28] Mondal S, Paul T, Maiti S M, et al. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy, 2020, 74: 104870 doi: 10.1016/j.nanoen.2020.104870
    [29] Koka A, Zhou Z, Sodano H A. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci, 2014, 7(1): 288 doi: 10.1039/C3EE42540A
    [30] Priya S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram, 2007, 19(1): 167 doi: 10.1007/s10832-007-9043-4
  • 加載中
圖(6)
計量
  • 文章訪問數:  470
  • HTML全文瀏覽量:  448
  • PDF下載量:  78
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-14
  • 網絡出版日期:  2022-06-02
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回