<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

晶面協同NaF–TiO2/rGO的制備及其光催化性能

張超妍 夏靜芬 謝周云 張妮 徐伊漪 唐力 楊國靖

張超妍, 夏靜芬, 謝周云, 張妮, 徐伊漪, 唐力, 楊國靖. 晶面協同NaF–TiO2/rGO的制備及其光催化性能[J]. 工程科學學報, 2023, 45(2): 278-285. doi: 10.13374/j.issn2095-9389.2022.04.07.002
引用本文: 張超妍, 夏靜芬, 謝周云, 張妮, 徐伊漪, 唐力, 楊國靖. 晶面協同NaF–TiO2/rGO的制備及其光催化性能[J]. 工程科學學報, 2023, 45(2): 278-285. doi: 10.13374/j.issn2095-9389.2022.04.07.002
ZHANG Chao-yan, XIA Jing-fen, XIE Zhou-yun, ZHANG Ni, XU Yi-yi, TANG Li, YANG Guo-jing. Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy[J]. Chinese Journal of Engineering, 2023, 45(2): 278-285. doi: 10.13374/j.issn2095-9389.2022.04.07.002
Citation: ZHANG Chao-yan, XIA Jing-fen, XIE Zhou-yun, ZHANG Ni, XU Yi-yi, TANG Li, YANG Guo-jing. Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy[J]. Chinese Journal of Engineering, 2023, 45(2): 278-285. doi: 10.13374/j.issn2095-9389.2022.04.07.002

晶面協同NaF–TiO2/rGO的制備及其光催化性能

doi: 10.13374/j.issn2095-9389.2022.04.07.002
基金項目: 國家自然科學基金資助項目(51408551);浙江省公益技術應用研究計劃資助項目(LGF22E090008);寧波市重點研發計劃暨“揭榜掛帥”資助項目(2022Z059);浙江省一流學科課題資助項目(CX2020031);浙江萬里學院科研創新團隊資助項目
詳細信息
    通訊作者:

    E-mail: guojing_yang@163.com

  • 中圖分類號: TN304.2

Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy

More Information
  • 摘要: 為解決二氧化鈦(TiO2)光生載流子壽命短的問題,以鈦酸四丁酯、氟化鈉和石墨粉為原料,采用水熱法制備了NaF–TiO2/rGO復合材料,通過透射電鏡(TEM)、X射線能譜分析(EDS)、X射線衍射(XRD)、光致發光光譜(PL)、紫外漫反射光譜(UV–Vis)對復合材料的微觀形貌、物相組成、晶型、熒光強度等特性進行了表征,并以降解羅丹明B(RhB)測試其光催化活性及降解機理。實驗結果表明,制備得到的產物主要為{001}、{101}晶面協同的銳鈦礦相TiO2并均勻分布于rGO表面,NaF與rGO的加入可有效降低其電子–空穴對的復合速率以及帶隙寬度從而提高光催化活性。在最佳制備條件下,催化反應80 min后對1×10–5 mol·L–1 羅丹明B(RhB)溶液的降解率可達99.8%,降解速率常數(0.0448 min–1)是NaF TiO2的1.67倍,且復合材料的催化性能隨其投加量的增大先加強后保持穩定,pH適用范圍為3~11;自由基猝滅實驗結果表明,在光催化降解過程中,起主要作用的活性物質是·OH和h+

     

  • 圖  1  TiO2(a)、NaF–TiO2(b)和NaF–TiO2/rGO(c~d)的TEM圖及NaF–TiO2/rGO的EDS(e)分析圖

    Figure  1.  TEM images of TiO2 (a), NaF–TiO2 (b), and NaF–TiO2/rGO (c and d) and EDS elemental mapping analysis of NaF–TiO2/rGO (e)

    圖  2  TiO2、NaF–TiO2和NaF–TiO2/rGO的XRD圖

    Figure  2.  XRD patterns of TiO2, NaF–TiO2, and NaF–TiO2/rGO

    圖  3  TiO2、NaF–TiO2和NaF–TiO2/rGO的PL圖

    Figure  3.  PL spectra of TiO2, NaF–TiO2, and NaF–TiO2/rGO

    圖  4  TiO2、NaF–TiO2和NaF–TiO2/rGO的紫外–可見吸收光譜圖(a)以及帶隙圖(b)

    Figure  4.  UV–Vis spectra (a) and bandgap (b) images of TiO2, NaF–TiO2, and the NaF–TiO2/rGO heterojunction

    圖  5  rGO的質量分數(a)、水熱溫度(b)、水熱時間(c)、NaF的質量分數(d)對光催化活性的影響

    Figure  5.  Effect of the amount of rGO added (a), the temperature (b), the time of the hydrothermal treatment (c), and the amount of NaF added (d) to the reaction solution on photocatalytic reduction

    圖  6  反應pH對光催化活性的影響

    Figure  6.  Effect of the pH of the reaction solution on photocatalytic reduction

    圖  7  復合材料濃度對光催化活性的影響

    Figure  7.  Effect of the composite concentration of the reaction solution on photocatalytic reduction

    圖  8  RhB濃度對光催化活性的影響

    Figure  8.  Effect of the RhB concentration of the reaction solution on photocatalytic reduction

    圖  9  NaF–TiO2/rGO復合材料對RhB的降解機理圖

    Figure  9.  Degradation mechanism diagram of RhB by composite materials

    表  1  不同捕獲劑對RhB光降解的影響

    Table  1.   Effects of different trapping agents on RhB photodegradation

    Radical scavengerFirst-order kinetics equationsk/min?1t(1/2)/minContribute/%
    Blankln(c0/ct)=0.0448t+0.3597,R2=0.9270.04487.4
    IPAln(c0/ct)=0.0027t+0.005,R2=0.9650.0027253.793.9
    BQln(c0/ct)=0.0203t–0.034,R2=0.9970.020335.754.7
    EDTA-2Naln(c0/ct)=0.0046t+0.006,R2=0.9950.0046148.789.7
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Do J Y, Chava R K, Mandari K K, et al. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl Catal B Environ, 2018, 237: 895 doi: 10.1016/j.apcatb.2018.06.070
    [2] Zhu S Y, Liang S J, Gu Q, et al. Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Appl Catal B Environ, 2012, 119-120: 146 doi: 10.1016/j.apcatb.2012.02.020
    [3] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc, 2012, 134(15): 6575 doi: 10.1021/ja302846n
    [4] Wu Y Y, Chen X T, Cao J C, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Appl Catal B Environ, 2021, 303: 120878
    [5] Iliev V, Tomova D, Bilyarska L. Promoting the oxidative removal rate of 2, 4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A Chem, 2018, 351: 69 doi: 10.1016/j.jphotochem.2017.10.022
    [6] Fang F, Liu Y X, Sun X, et al. TiO2 facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Appl Surf Sci, 2021, 564: 150407 doi: 10.1016/j.apsusc.2021.150407
    [7] Zhu Y A, Zhang Z Y, Lu N, et al. Prolonging charge-separation states by doping lanthanide-ions into{001}/{101}facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chin J Catal, 2019, 40(3): 413 doi: 10.1016/S1872-2067(18)63182-1
    [8] Chang Y H, Xia J F, Yang G J, et al. Preparation and properties of TiO2 photocatalyst with (001) crystal plane at atmospheric pressure. Ind Water Treat, 2020, 40(6): 27

    常巖航, 夏靜芬, 楊國靖, 等. (001)面暴露TiO2催化劑的常壓制備及性能研究. 工業水處理, 2020, 40(6):27
    [9] Zhao X P, Wang Y Q, Gao S W, et al. Synthesis of BiOBr/CeO2 composites for photocatalytic degradation of sulfisoxazole. Chin J Appl Chem, 2021, 38(4): 422

    趙星鵬, 王婭喬, 高生旺, 等. BiOBr/CeO2復合材料的制備及光催化降解磺胺異惡唑. 應用化學, 2021, 38(4):422
    [10] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201 doi: 10.1038/nature04235
    [11] Upadhyay R K, Soin N, Roy S S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv, 2014, 4(8): 3823 doi: 10.1039/C3RA45013A
    [12] Chowdhury S, Balasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Appl Catal B Environ, 2014, 160-161: 307 doi: 10.1016/j.apcatb.2014.05.035
    [13] Pastrana-Martínez L M, Morales-Torres S, Likodimos V, et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ, 2012, 123-124: 241 doi: 10.1016/j.apcatb.2012.04.045
    [14] Cheng P, Yang Z, Wang H, et al. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy, 2012, 37(3): 2224 doi: 10.1016/j.ijhydene.2011.11.004
    [15] Hu X B, Yu Y, Hou W M, et al. Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl Surf Sci, 2013, 273: 118 doi: 10.1016/j.apsusc.2013.01.201
    [16] Pang Q Q, Zhong X H, Yan W S, et al. Role of percentage of {001} crystal facets in TiO2 supports toward the water-gas shift reaction over Au–TiO2 catalysts. Chem Eng J, 2022, 446: 137010 doi: 10.1016/j.cej.2022.137010
    [17] Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun, 2007, 143(1-2): 101 doi: 10.1016/j.ssc.2007.02.047
    [18] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638 doi: 10.1038/nature06964
    [19] Wang D T, Li X, Chen J F, et al. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J, 2012, 198-199: 547 doi: 10.1016/j.cej.2012.04.062
    [20] Castañeda C, Martínez J J, Santos L, et al. Caffeine photocatalytic degradation using composites of NiO/TiO2-F and CuO/TiO2-F under UV irradiation. Chemosphere, 2022, 288(Pt 2): 132506
    [21] Chen X B, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc, 2008, 130(15): 5018 doi: 10.1021/ja711023z
    [22] Xiao L, Wang Y L, Yu S L, et al. Graphene-containing composite materials for water treatment. Prog Chem, 2013, 25(Suppl 1): 419

    肖藍, 王祎龍, 于水利, 等. 石墨烯及其復合材料在水處理中的應用. 化學進展, 2013, 25(增刊1): 419
    [23] Wang Z Y, Xiang H R, Zou J W, et al. Effect of process factors of microwave hydrothermal method on the preparation of micron-sized spherical α-Al2O3 particles. Inorg Chem Commun, 2021, 133: 108938 doi: 10.1016/j.inoche.2021.108938
    [24] Chen P, Di S Y, Qiu X Q, et al. One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Appl Surf Sci, 2022, 587: 152889 doi: 10.1016/j.apsusc.2022.152889
    [25] Kumar R, Umar A, Kumar G, et al. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int, 2015, 41(6): 7773 doi: 10.1016/j.ceramint.2015.02.110
    [26] Chai Q W, Lü Y, Zhang Z, et al. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst. China Environ Sci, 2019, 39(7): 2822

    柴晴雯, 呂艷, 張周, 等. Cu2O@ZnO復合光催化劑對難生物降解有機物的光降解. 中國環境科學, 2019, 39(7):2822
    [27] Li C X, Jin H Z, Yang Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. J Inorg Mater, 2017, 32(4): 357 doi: 10.15541/jim20160349

    李翠霞, 金海澤, 楊志忠, 等. 介孔RGO/TiO2復合光催化材料的制備及光催化性能. 無機材料學報, 2017, 32(4):357 doi: 10.15541/jim20160349
    [28] Rasalingam S, Peng R, Koodali R T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Appl Catal B Environ, 2015, 174-175: 49 doi: 10.1016/j.apcatb.2015.02.040
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  448
  • HTML全文瀏覽量:  211
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-07
  • 網絡出版日期:  2022-09-13
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回