-
摘要: 為解決二氧化鈦(TiO2)光生載流子壽命短的問題,以鈦酸四丁酯、氟化鈉和石墨粉為原料,采用水熱法制備了NaF–TiO2/rGO復合材料,通過透射電鏡(TEM)、X射線能譜分析(EDS)、X射線衍射(XRD)、光致發光光譜(PL)、紫外漫反射光譜(UV–Vis)對復合材料的微觀形貌、物相組成、晶型、熒光強度等特性進行了表征,并以降解羅丹明B(RhB)測試其光催化活性及降解機理。實驗結果表明,制備得到的產物主要為{001}、{101}晶面協同的銳鈦礦相TiO2并均勻分布于rGO表面,NaF與rGO的加入可有效降低其電子–空穴對的復合速率以及帶隙寬度從而提高光催化活性。在最佳制備條件下,催化反應80 min后對1×10–5 mol·L–1 羅丹明B(RhB)溶液的降解率可達99.8%,降解速率常數(0.0448 min–1)是NaF – TiO2的1.67倍,且復合材料的催化性能隨其投加量的增大先加強后保持穩定,pH適用范圍為3~11;自由基猝滅實驗結果表明,在光催化降解過程中,起主要作用的活性物質是·OH和h+。Abstract: TiO2 has been widely studied because of its excellent photocatalytic properties but still has defects, such as the short lifetime of the photogenerated carrier. To solve these problems, a novel NaF–TiO2/rGO composite has been successfully synthesized using the hydrothermal method. The photocatalyst complexes were characterized using transmission electron microscope (TEM), energy dispersive spectrometer (EDS), diffraction of X-rays (XRD), photoluminescence spectroscopy (PL), and ultraviolet–visible spectroscopy (UV–Vis). This paper investigates the effects of hydrothermal temperature, hydrothermal time, rGO content, and NaF content on the photocatalytic activity of the NaF–TiO2/rGO composite, and the photocatalytic activity is evaluated using the photocatalytic degradation of RhB under fluorescent lamp illumination for approximately 80 min. The TEM analysis and identification results indicate that rGO can be incorporated into TiO2 to form a heterogeneous structure. The XRD results show that no heterophase formation occurs in the prepared NaF – TiO2/rGO composite, and the NaF – TiO2/rGO composite on the rGO surface does not cause the crystal shape change of the anatase phase. The PL results indicate that the main products are TiO2 with {001} and {101} facet synergy, and adding rGO effectively reduces the electron–hole pair recombination rate. The UV–Vis results show that the band gap energy of TiO2 is reduced by introducing NaF and further reduced after rGO is combined, thereby enhancing the photocatalytic activity and efficiency of TiO2. Compare and analyze RhB degradation using different factor systems and determine the best synthesis process for preparing composite materials at a hydrothermal temperature of 100 ℃, a hydrothermal time of 10 h, an rGO content of 0.3%, and a NaF content of 30%. The composite material had the best photocatalytic activity. The photocatalytic test results indicate that NaF–TiO2/rGO synthesized using the hydrothermal method has a better light absorption efficiency. The samples have a better RhB degradation rate under simulated solar irradiation. The RhB degradation followed pseudo-first-order reaction kinetics with a rate constant of 0.0448 min?1, which is 1.67 times that of NaF–TiO2. The RhB degradation rate over 80 min reached 99.8%, increasing first and then remaining constant with increasing NaF–TiO2/rGO dosage. Additionally, NaF–TiO2/rGO has good catalytic activity in the pH range of 3?11. The results of free radical capture showed that all three kinds of free radicals participated in RhB photocatalytic degradation, and the main active species in the reaction system should be ·OH and h+.
-
Key words:
- rGO /
- facets synergy of TiO2 /
- photocatalysis /
- RhB /
- degradation mechanism
-
表 1 不同捕獲劑對RhB光降解的影響
Table 1. Effects of different trapping agents on RhB photodegradation
Radical scavenger First-order kinetics equations k/min?1 t(1/2)/min Contribute/% Blank ln(c0/ct)=0.0448t+0.3597,R2=0.927 0.0448 7.4 — IPA ln(c0/ct)=0.0027t+0.005,R2=0.965 0.0027 253.7 93.9 BQ ln(c0/ct)=0.0203t–0.034,R2=0.997 0.0203 35.7 54.7 EDTA-2Na ln(c0/ct)=0.0046t+0.006,R2=0.995 0.0046 148.7 89.7 www.77susu.com -
參考文獻
[1] Do J Y, Chava R K, Mandari K K, et al. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl Catal B Environ, 2018, 237: 895 doi: 10.1016/j.apcatb.2018.06.070 [2] Zhu S Y, Liang S J, Gu Q, et al. Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Appl Catal B Environ, 2012, 119-120: 146 doi: 10.1016/j.apcatb.2012.02.020 [3] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc, 2012, 134(15): 6575 doi: 10.1021/ja302846n [4] Wu Y Y, Chen X T, Cao J C, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Appl Catal B Environ, 2021, 303: 120878 [5] Iliev V, Tomova D, Bilyarska L. Promoting the oxidative removal rate of 2, 4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A Chem, 2018, 351: 69 doi: 10.1016/j.jphotochem.2017.10.022 [6] Fang F, Liu Y X, Sun X, et al. TiO2 facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Appl Surf Sci, 2021, 564: 150407 doi: 10.1016/j.apsusc.2021.150407 [7] Zhu Y A, Zhang Z Y, Lu N, et al. Prolonging charge-separation states by doping lanthanide-ions into{001}/{101}facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chin J Catal, 2019, 40(3): 413 doi: 10.1016/S1872-2067(18)63182-1 [8] Chang Y H, Xia J F, Yang G J, et al. Preparation and properties of TiO2 photocatalyst with (001) crystal plane at atmospheric pressure. Ind Water Treat, 2020, 40(6): 27常巖航, 夏靜芬, 楊國靖, 等. (001)面暴露TiO2催化劑的常壓制備及性能研究. 工業水處理, 2020, 40(6):27 [9] Zhao X P, Wang Y Q, Gao S W, et al. Synthesis of BiOBr/CeO2 composites for photocatalytic degradation of sulfisoxazole. Chin J Appl Chem, 2021, 38(4): 422趙星鵬, 王婭喬, 高生旺, 等. BiOBr/CeO2復合材料的制備及光催化降解磺胺異惡唑. 應用化學, 2021, 38(4):422 [10] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201 doi: 10.1038/nature04235 [11] Upadhyay R K, Soin N, Roy S S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv, 2014, 4(8): 3823 doi: 10.1039/C3RA45013A [12] Chowdhury S, Balasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Appl Catal B Environ, 2014, 160-161: 307 doi: 10.1016/j.apcatb.2014.05.035 [13] Pastrana-Martínez L M, Morales-Torres S, Likodimos V, et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ, 2012, 123-124: 241 doi: 10.1016/j.apcatb.2012.04.045 [14] Cheng P, Yang Z, Wang H, et al. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy, 2012, 37(3): 2224 doi: 10.1016/j.ijhydene.2011.11.004 [15] Hu X B, Yu Y, Hou W M, et al. Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl Surf Sci, 2013, 273: 118 doi: 10.1016/j.apsusc.2013.01.201 [16] Pang Q Q, Zhong X H, Yan W S, et al. Role of percentage of {001} crystal facets in TiO2 supports toward the water-gas shift reaction over Au–TiO2 catalysts. Chem Eng J, 2022, 446: 137010 doi: 10.1016/j.cej.2022.137010 [17] Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun, 2007, 143(1-2): 101 doi: 10.1016/j.ssc.2007.02.047 [18] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638 doi: 10.1038/nature06964 [19] Wang D T, Li X, Chen J F, et al. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J, 2012, 198-199: 547 doi: 10.1016/j.cej.2012.04.062 [20] Castañeda C, Martínez J J, Santos L, et al. Caffeine photocatalytic degradation using composites of NiO/TiO2-F and CuO/TiO2-F under UV irradiation. Chemosphere, 2022, 288(Pt 2): 132506 [21] Chen X B, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc, 2008, 130(15): 5018 doi: 10.1021/ja711023z [22] Xiao L, Wang Y L, Yu S L, et al. Graphene-containing composite materials for water treatment. Prog Chem, 2013, 25(Suppl 1): 419肖藍, 王祎龍, 于水利, 等. 石墨烯及其復合材料在水處理中的應用. 化學進展, 2013, 25(增刊1): 419 [23] Wang Z Y, Xiang H R, Zou J W, et al. Effect of process factors of microwave hydrothermal method on the preparation of micron-sized spherical α-Al2O3 particles. Inorg Chem Commun, 2021, 133: 108938 doi: 10.1016/j.inoche.2021.108938 [24] Chen P, Di S Y, Qiu X Q, et al. One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Appl Surf Sci, 2022, 587: 152889 doi: 10.1016/j.apsusc.2022.152889 [25] Kumar R, Umar A, Kumar G, et al. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int, 2015, 41(6): 7773 doi: 10.1016/j.ceramint.2015.02.110 [26] Chai Q W, Lü Y, Zhang Z, et al. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst. China Environ Sci, 2019, 39(7): 2822柴晴雯, 呂艷, 張周, 等. Cu2O@ZnO復合光催化劑對難生物降解有機物的光降解. 中國環境科學, 2019, 39(7):2822 [27] Li C X, Jin H Z, Yang Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. J Inorg Mater, 2017, 32(4): 357 doi: 10.15541/jim20160349李翠霞, 金海澤, 楊志忠, 等. 介孔RGO/TiO2復合光催化材料的制備及光催化性能. 無機材料學報, 2017, 32(4):357 doi: 10.15541/jim20160349 [28] Rasalingam S, Peng R, Koodali R T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Appl Catal B Environ, 2015, 174-175: 49 doi: 10.1016/j.apcatb.2015.02.040 -