[1] |
Kalam S, Afagwu C, Jaberi J A, et al. A review on non-aqueous fracturing techniques in unconventional reservoirs. J Nat Gas Sci Eng, 2021, 95: 104223 doi: 10.1016/j.jngse.2021.104223
|
[2] |
Nikolaev M Y, Kazak A V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review. Earth Sci Rev, 2019, 194: 327 doi: 10.1016/j.earscirev.2019.05.012
|
[3] |
He J M, Li X, Yin C, et al. Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale. Energy, 2020, 191: 116449 doi: 10.1016/j.energy.2019.116449
|
[4] |
Li W, Liu J S, Zeng J, et al. A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction. Fuel, 2020, 278: 118214 doi: 10.1016/j.fuel.2020.118214
|
[5] |
Hudson J A, Stephansson O, Andersson J, et al. Coupled T-H-M issues relating to radioactive waste repository design and performance. Int J Rock Mech Min Sci, 2001, 38(1): 143 doi: 10.1016/S1365-1609(00)00070-8
|
[6] |
Wu K L, Chen Z X, Li X F, et al. Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect. Fuel, 2017, 205: 173 doi: 10.1016/j.fuel.2017.05.055
|
[7] |
Wang S, Shi J T, Wang K, et al. New coupled apparent permeability models for gas transport in inorganic nanopores of shale reservoirs considering multiple effects. Energy Fuels, 2017, 31(12): 13545 doi: 10.1021/acs.energyfuels.7b02948
|
[8] |
Fan X, Li G S, Shah S N, et al. Analysis of a fully coupled gas flow and deformation process in fractured shale gas reservoirs. J Nat Gas Sci Eng, 2015, 27: 901 doi: 10.1016/j.jngse.2015.09.040
|
[9] |
Zhu W Y, Chen Z, Song Z Y, et al. Research progress in theories and technologies of shale gas development in China. Chin J Eng, 2021, 43(10): 1397朱維耀, 陳震, 宋智勇, 等. 中國頁巖氣開發理論與技術研究進展. 工程科學學報, 2021, 43(10):1397
|
[10] |
Wang J, Liu H Q, Wang L, et al. Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects. Int J Coal Geol, 2015, 152: 50 doi: 10.1016/j.coal.2015.10.004
|
[11] |
Chen D, Pan Z J, Ye Z H. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel, 2015, 139: 383 doi: 10.1016/j.fuel.2014.09.018
|
[12] |
Mi L D, Jiang H Q, Cao Y, et al. Comprehensive apparent permeability model coupled shale gas transfer mechanisms in natural fractures and matrix. J Pet Sci Eng, 2019, 172: 878 doi: 10.1016/j.petrol.2018.08.080
|
[13] |
Cui G L, Liu J S, Wei M Y, et al. Evolution of permeability during the process of shale gas extraction. J Nat Gas Sci Eng, 2018, 49: 94 doi: 10.1016/j.jngse.2017.10.018
|
[14] |
Akkutlu I Y, Fathi E. Multiscale gas transport in shales with local kerogen heterogeneities. SPE J, 2012, 17(4): 1002 doi: 10.2118/146422-PA
|
[15] |
Tang S, Zhu W Y, Zhang J C. Production analysis and fracturing parameter optimization of shale gas from Zhongmou Block in southern North China Basin. Chin J Eng, 2020, 42(12): 1573唐帥, 朱維耀, 張金川. 中牟區塊過渡相頁巖氣藏產能分析及壓裂參數優選. 工程科學學報, 2020, 42(12):1573
|
[16] |
Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull, 2009, 93(3): 329 doi: 10.1306/10240808059
|
[17] |
Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 2013, 103: 606 doi: 10.1016/j.fuel.2012.06.119
|
[18] |
Yuan B, Su Y L, Moghanloo R G, et al. A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity. J Nat Gas Sci Eng, 2015, 23: 227 doi: 10.1016/j.jngse.2015.01.045
|
[19] |
Zhu W Y, Li H, Deng Q J, et al. Review on mesoscopic flow theory in porous media. Chin J Eng, 2022, 44(5): 951 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205014朱維耀, 李華, 鄧慶軍, 等. 多孔介質細觀流動理論研究進展. 工程科學學報, 2022, 44(5):951 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205014
|
[20] |
Wang L, Wang S H, Zhang R L, et al. Review of multi-scale and multi-physical simulation technologies for shale and tight gas reservoirs. J Nat Gas Sci Eng, 2017, 37: 560 doi: 10.1016/j.jngse.2016.11.051
|
[21] |
Teklu T W, Li X P, Zhou Z, et al. Experimental investigation on permeability and porosity hysteresis of tight formations. SPE J, 2018, 23(3): 672 doi: 10.2118/180226-PA
|
[22] |
Ping C, Wen Y D, Wang Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ Earth Sci, 2016, 75(10): 900 doi: 10.1007/s12665-016-5699-x
|
[23] |
Dong J J, Hsu J Y, Wu W J, et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Mech Min Sci, 2010, 47(7): 1141 doi: 10.1016/j.ijrmms.2010.06.019
|
[24] |
Tinni A, Fathi E, Agarwal R, et al. Shale Permeability Measurements on Plugs and Crushed Samples//SPE Canadian Unconventional Resources Conference. Alberta, 2012
|
[25] |
Heller R, Vermylen J, Zoback M. Experimental investigation of matrix permeability of gas shales. AAPG Bull, 2014, 98(5): 975 doi: 10.1306/09231313023
|
[26] |
Wang H L, Xu W Y, Zuo J. Compact rock material gas permeability properties. Phys B:Condens Matter, 2014, 449: 10 doi: 10.1016/j.physb.2014.04.049
|
[27] |
Ghanizadeh A, Bhowmik S, Haeri-Ardakani O, et al. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques: Examples from the Duvernay Formation, Alberta (Canada). Fuel, 2015, 140: 371 doi: 10.1016/j.fuel.2014.09.073
|
[28] |
Zhong X Y, Zhu Y S, Liu L P, et al. The characteristics and influencing factors of permeability stress sensitivity of tight sandstone reservoirs. J Pet Sci Eng, 2020, 191: 107221 doi: 10.1016/j.petrol.2020.107221
|
[29] |
Curtis J B. Fractured shale-gas systems. AAPG Bull, 2002, 86(11): 1921
|
[30] |
Chen T Y, Feng X T, Pan Z J. Experimental study of swelling of organic rich shale in methane. Int J Coal Geol, 2015, 150-151: 64 doi: 10.1016/j.coal.2015.08.001
|
[31] |
Cao P, Liu J, Leong Y K. Combined impact of flow regimes and effective stress on the evolution of shale apparent permeability. J Unconv Oil Gas Resour, 2016, 14: 32 doi: 10.1016/j.juogr.2016.01.004
|
[32] |
Yu J H, Shang X C, Wu P F. Experimental study and theoretical analysis on shale strength. Sci Sin Technol, 2016, 46(2): 135 doi: 10.1360/N092016-00007
|
[33] |
Bera A, Kumar S, Foroozesh J, et al. Multiphysics gas transport in nanoporous unconventional reservoirs: Challenges of mathematical modelling. J Nat Gas Sci Eng, 2022, 103(3): 104649
|
[34] |
Ghaednia H, Pope S A, Jackson R L, et al. A comprehensive study of the elasto-plastic contact of a sphere and a flat. Tribol Int, 2016, 93: 78 doi: 10.1016/j.triboint.2015.09.005
|
[35] |
Wu S C, Sun W, Cheng Z Q. Acoustic emission characteristics of Brazilian test for low-porosity sandstone under different load conditions. Chin J Eng, 2020, 42(8): 988吳順川, 孫偉, 成子橋. 不同荷載條件下低孔隙率砂巖巴西劈裂試驗的聲發射特性. 工程科學學報, 2020, 42(8):988
|
[36] |
Lyu Q, Shi J D, Gamage R P. Effects of testing method, lithology and fluid-rock interactions on shale permeability: A review of laboratory measurements. J Nat Gas Sci Eng, 2020, 78: 103302 doi: 10.1016/j.jngse.2020.103302
|
[37] |
Feng R M, Liu J, Bernhardt-Barry M L, et al. Transverse permeability measurements of gas shales under replicated in-situ flow conditions: Mathematical modeling and laboratory testing. J Nat Gas Sci Eng, 2021, 95: 104159 doi: 10.1016/j.jngse.2021.104159
|
[38] |
Pan L, Xiao X M, Tian H, et al. Geological models of gas in place of the Longmaxi shale in Southeast Chongqing, South China. Mar Pet Geol, 2016, 73: 433 doi: 10.1016/j.marpetgeo.2016.03.018
|
[39] |
Rogala A, Bernaciak M, Krzysiek J, et al. Non aqueous fracturing technologies for shale gas recovery. Physicochem Probl Miner Process, 2012, 49(1): 31
|
[40] |
Gutierrez M, Lewis R, Masters I. Petroleum reservoir simulation coupling fluid flow and geomechanics. SPE Reserv Eval Eng, 2001, 4(3): 164 doi: 10.2118/72095-PA
|
[41] |
Zhu W C, Wei C H, Liu J, et al. A model of coal-gas interaction under variable temperatures. Int J Coal Geol, 2011, 86(2-3): 213 doi: 10.1016/j.coal.2011.01.011
|
[42] |
Qu H Y, Liu J S, Chen Z W, et al. Complex evolution of coal permeability during CO? injection under variable temperatures. Int J Greenh Gas Control, 2012, 9: 281 doi: 10.1016/j.ijggc.2012.04.003
|
[43] |
Liu Y K, Xiong Y Q, Li Y, et al. Effects of oil expulsion and pressure on nanopore development in highly mature shale: Evidence from a pyrolysis study of the Eocene Maoming oil shale, South China. Mar Pet Geol, 2017, 86: 526 doi: 10.1016/j.marpetgeo.2017.06.012
|
[44] |
Guo H J, Jia W L, Peng P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang Shale with Type II kerogen. Org Geochem, 2017, 105: 56 doi: 10.1016/j.orggeochem.2017.01.004
|
[45] |
Harpalani S, Schraufnagel A. Measurement of parameters impacting methane recovery from coal seams. Int J Min Geol Eng, 1990, 8(4): 369 doi: 10.1007/BF00920648
|
[46] |
Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205001吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205001
|
[47] |
Liu X J, Xiong J, Liang L X. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J Nat Gas Sci Eng, 2015, 22: 62 doi: 10.1016/j.jngse.2014.11.020
|
[48] |
Lin K, Yuan Q Z, Zhao Y P. Using graphene to simplify the adsorption of methane on shale in MD simulations. Comput Mater Sci, 2017, 133: 99 doi: 10.1016/j.commatsci.2017.03.010
|
[49] |
Lin K, Huang X F, Zhao Y P. Combining image recognition and simulation to reproduce the adsorption/desorption behaviors of shale gas. Energy Fuels, 2019, 34(1): 258
|
[50] |
Jin F Y, Jiang T T, Yuan C D, et al. An improved viscosity prediction model of extra heavy oil for high temperature and high pressure. Fuel, 2022, 319: 123852 doi: 10.1016/j.fuel.2022.123852
|
[51] |
Bai F T, Sun Y H, Liu Y M, et al. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187: 1 doi: 10.1016/j.fuel.2016.09.012
|
[52] |
Saif T, Lin Q Y, Bijeljic B, et al. Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197: 562 doi: 10.1016/j.fuel.2017.02.030
|
[53] |
Zhao J, Yang D, Kang Z Q, et al. A micro-CT study of changes in the internal structure of Daqing and Yan’an oil shales at high temperatures. Oil Shale, 2012, 29(4): 357 doi: 10.3176/oil.2012.4.06
|
[54] |
Tiwari P, Deo M, Lin C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107: 547 doi: 10.1016/j.fuel.2013.01.006
|
[55] |
Lan W J, Wang H X, Zhang X, et al. Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock. Energy, 2020, 206: 118211 doi: 10.1016/j.energy.2020.118211
|
[56] |
Liu H P, Feng S Y, Zhang S Q, et al. Analysis of the pore structure of Longkou oil shale semicoke during fluidized bed combustion. Oil Shale, 2020, 37(2): 89 doi: 10.3176/oil.2020.2.01
|
[57] |
Liu Z J, Yang D, Hu Y Q, et al. Influence of in situ pyrolysis on the evolution of pore structure of oil shale. Energies, 2018, 11(4): 755 doi: 10.3390/en11040755
|
[58] |
Zhang H B, Liu J S, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int J Rock Mech Min Sci, 2008, 45(8): 1226 doi: 10.1016/j.ijrmms.2007.11.007
|
[59] |
Peng Y, Liu J S, Pan Z J, et al. A sequential model of shale gas transport under the influence of fully coupled multiple processes. J Nat Gas Sci Eng, 2015, 27: 808 doi: 10.1016/j.jngse.2015.09.031
|
[60] |
Cao P, Liu J S, Leong Y K. A fully coupled multiscale shale deformation-gas transport model for the evaluation of shale gas extraction. Fuel, 2016, 178: 103 doi: 10.1016/j.fuel.2016.03.055
|
[61] |
Zhao Y L, Lu G, Zhang L H, et al. Numerical simulation of shale gas reservoirs considering discrete fracture network using a coupled multiple transport mechanisms and geomechanics model. J Pet Sci Eng, 2020, 195: 107588 doi: 10.1016/j.petrol.2020.107588
|
[62] |
Vernik L, Milovac J. Rock physics of organic shales. Lead Edge, 2011, 30(3): 318 doi: 10.1190/1.3567263
|
[63] |
Islam M A, Skalle P. An experimental investigation of shale mechanical properties through drained and undrained test mechanisms. Rock Mech Rock Eng, 2013, 46(6): 1391 doi: 10.1007/s00603-013-0377-8
|
[64] |
Berryman J G. Extension of poroelastic analysis to double-porosity materials: New technique in microgeomechanics. J Eng Mech, 2002, 128(8): 840
|
[65] |
Lu Y H, Wei S M, Xia Y, et al. Modeling of geomechanics and fluid flow in fractured shale reservoirs with deformable multi-continuum matrix. J Pet Sci Eng, 2021, 196: 107576 doi: 10.1016/j.petrol.2020.107576
|
[66] |
Zhang J, Li Y W, Pan Y S, et al. Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir. Eng Geol, 2021, 281: 105981 doi: 10.1016/j.enggeo.2020.105981
|
[67] |
Wang Y J, Zhao B, Zhang Z N. Numerical simulation of stress reorientation around wellbore in production and refracture stimulation. Eng Anal Bound Elem, 2021, 133: 165 doi: 10.1016/j.enganabound.2021.09.005
|
[68] |
Saghafi A, Faiz M, Roberts D. CO? storage and gas diffusivity properties of coals from Sydney Basin, Australia. Int J Coal Geol, 2007, 70(1-3): 240 doi: 10.1016/j.coal.2006.03.006
|
[69] |
Lasseux D, Valdés-Parada F J. On the developments of Darcy’s law to include inertial and slip effects. Comptes Rendus Mecanique, 2017, 345(9): 660 doi: 10.1016/j.crme.2017.06.005
|
[70] |
Zhang L J, Li D L, Lu D T, et al. A new formulation of apparent permeability for gas transport in shale. J Nat Gas Sci Eng, 2015, 23: 221 doi: 10.1016/j.jngse.2015.01.042
|
[71] |
Zhang L H, Shan B C, Zhao Y L, et al. Review of micro seepage mechanisms in shale gas reservoirs. Int J Heat Mass Transf, 2019, 139: 144 doi: 10.1016/j.ijheatmasstransfer.2019.04.141
|
[72] |
Song W H, Yao J, Wang D Y, et al. Nanoscale confined gas and water multiphase transport in nanoporous shale with dual surface wettability. Adv Water Resour, 2019, 130: 300 doi: 10.1016/j.advwatres.2019.06.012
|
[73] |
Sun Z, Li X F, Shi J T, et al. Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic. Int J Heat Mass Transf, 2017, 115: 1008 doi: 10.1016/j.ijheatmasstransfer.2017.07.123
|
[74] |
Li Y D, Kalantari-Dahaghi A, Zolfaghari A, et al. A new model for the transport of gaseous hydrocarbon in shale nanopores coupling real gas effect, adsorption, and multiphase pore fluid occupancies. Int J Heat Mass Transf, 2020, 148: 119026 doi: 10.1016/j.ijheatmasstransfer.2019.119026
|
[75] |
Beskok A, Karniadakis G E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1): 43 doi: 10.1080/108939599199864
|
[76] |
Civan F, Rai C S, Sondergeld C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transp Porous Med, 2011, 86(3): 925 doi: 10.1007/s11242-010-9665-x
|
[77] |
Akilu S, Padmanabhan E, Sun Z. A review of transport mechanisms and models for unconventional tight shale gas reservoir systems. Int J Heat Mass Transf, 2021, 175: 121125 doi: 10.1016/j.ijheatmasstransfer.2021.121125
|
[78] |
Taghavinejad A, Sharifi M, Heidaryan E, et al. Flow modeling in shale gas reservoirs: A comprehensive review. J Nat Gas Sci Eng, 2020, 83: 103535 doi: 10.1016/j.jngse.2020.103535
|
[79] |
Zhou Y, Rajapakse R K N D, Graham J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration. Int J Solids Struct, 1998, 35(34-35): 4659 doi: 10.1016/S0020-7683(98)00089-4
|
[80] |
Zhu W Y, Chen Z, Liu K. A new meshless method to solve the two-phase thermo-hydro-mechanical multi-physical field coupling problems in shale reservoirs. J Nat Gas Sci Eng, 2022, 105: 104683 doi: 10.1016/j.jngse.2022.104683
|
[81] |
Huang Z W, Zhang S K, Yang R Y, et al. A review of liquid nitrogen fracturing technology. Fuel, 2020, 266: 117040 doi: 10.1016/j.fuel.2020.117040
|
[82] |
Jia B, Tsau J S, Barati R. A review of the current progress of CO? injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236: 404 doi: 10.1016/j.fuel.2018.08.103
|
[83] |
Hu L X, Li H Z, Babadagli T, et al. Thermal stimulation of shale formations by electromagnetic heating: A clean technique for enhancing oil and gas recovery. J Clean Prod, 2020, 277: 123197 doi: 10.1016/j.jclepro.2020.123197
|
[84] |
Taheri-Shakib J, Kantzas A. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 2021, 305: 121519 doi: 10.1016/j.fuel.2021.121519
|
[85] |
Gu F G, Chalaturnyk R. Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation. J Pet Sci Eng, 2010, 74(3-4): 113 doi: 10.1016/j.petrol.2010.09.002
|
[86] |
Bhandari A R, Flemings P B, Polito P J, et al. Anisotropy and stress dependence of permeability in the Barnett shale. Transp Porous Med, 2015, 108(2): 393 doi: 10.1007/s11242-015-0482-0
|
[87] |
Huang T, Tao Z W, Li E P, et al. Effect of permeability anisotropy on the production of multi-scale shale gas reservoirs. Energies, 2017, 10(10): 1549 doi: 10.3390/en10101549
|
[88] |
Yuan J W, Jiang R Z, Cui Y Z, et al. The numerical simulation of thermal recovery considering rock deformation in shale gas reservoir. Int J Heat Mass Transfer, 2019, 138: 719 doi: 10.1016/j.ijheatmasstransfer.2019.04.098
|
[89] |
Ma Y, Pan Z J, Zhong N N, et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel, 2016, 180: 106 doi: 10.1016/j.fuel.2016.04.029
|
[90] |
Qi Q. Multi-field Coupling Nonlinear Seepage Theory of Multistage Fractured Horizontal Wells for Shale Gas Reservoirs [Dissertation]. Beijing: University of Science and Technology Beijing, 2020亓倩. 頁巖氣儲層多級壓裂水平井多場耦合非線性滲流理論研究[學位論文]. 北京: 北京科技大學, 2020
|
[91] |
Frash L P, Carey J W, Welch N J. Scalable En Echelon Shear‐Fracture Aperture‐Roughness Mechanism: Theory, Validation, and Implications. J Geophys Res Solid Earth, 2019, 124: 957 doi: 10.1029/2018JB016525
|
[92] |
Li W F, Frash L P, Welch N J, et al. Stress-dependent fracture permeability measurements and implications for shale gas production. Fuel, 2021, 290(9): 119984
|
[93] |
Yang S, Wu K L, Xu J Z, et al. Roles of multicomponent adsorption and geomechanics in the development of an Eagle Ford shale condensate reservoir. Fuel, 2019, 242: 710 doi: 10.1016/j.fuel.2019.01.016
|
[94] |
Guo T K, Tang S J, Sun J, et al. A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation. Appl Energy, 2019, 258: 113981
|
[95] |
Noorishad J, Tsang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: Numerical approach. J Geophys Res, 1984, 89: 10365 doi: 10.1029/JB089iB12p10365
|
[96] |
Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci, 2011, 37(6): 739 doi: 10.1016/j.cageo.2010.08.006
|
[97] |
Wang W, Kolditz O. Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Meth Eng, 2010, 69: 162
|
[98] |
Longuemare P, Mainguy M, Lemonnier P, et al. Geomechanics in reservoir simulation: Overview of coupling methods and field case study. Oil Gas Sci Technol, 2002, 57(5): 471 doi: 10.2516/ogst:2002031
|
[99] |
Minkoff S E, Stone C M, Bryant S, et al. Coupled fluid flow and geomechanical deformation modeling. J Pet Sci Eng, 2003, 38(1-2): 37 doi: 10.1016/S0920-4105(03)00021-4
|
[100] |
Li J W, Wong Z Y, Tomin P, et al. Sequential Implicit Newton Method for Coupled Multi-Segment Wells//SPE Reservoir Simulation Conference. Galveston, 2019
|
[101] |
Zhang R L, Wu Y S. Sequentially coupled model for multiphase flow, mean stress, and reactive solute transport with kinetic chemical reactions: Applications in CO? geological sequestration. J Porous Media, 2016, 19(11): 1001 doi: 10.1615/JPorMedia.v19.i11.60
|
[102] |
Zhang R L, Xiong Y, Winterfeld P H, et al. A novel computational framework for thermal-hydrological-mechanical-chemical processes of CO? geological sequestration into a layered saline aquifer and a naturally fractured enhanced geothermal system. Greenh Gases Sci Technol, 2016, 6(3): 370 doi: 10.1002/ghg.1571
|
[103] |
Settari A, Walters D A. Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J, 2001, 6(3): 334 doi: 10.2118/74142-PA
|
[104] |
Han S C, Cheng Y F, Gao Q, et al. A fully coupled thermo-hydro-mechanical model with ice-water phase change for liquid nitrogen injection simulation. J Pet Sci Eng, 2021, 203(1): 108676
|
[105] |
Fung L S, Dogru A H. Parallel unstructured-solver methods for simulation of complex giant reservoirs. SPE J, 2008, 13(4): 440 doi: 10.2118/106237-PA
|