<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種塊體–顆粒–桿件的耦合方法及其在隧道支護模擬中的應用

李曉光 李長洪 馮春

李曉光, 李長洪, 馮春. 一種塊體–顆粒–桿件的耦合方法及其在隧道支護模擬中的應用[J]. 工程科學學報, 2023, 45(6): 1023-1033. doi: 10.13374/j.issn2095-9389.2022.03.25.005
引用本文: 李曉光, 李長洪, 馮春. 一種塊體–顆粒–桿件的耦合方法及其在隧道支護模擬中的應用[J]. 工程科學學報, 2023, 45(6): 1023-1033. doi: 10.13374/j.issn2095-9389.2022.03.25.005
LI Xiao-guang, LI Chang-hong, FENG Chun. A block–particle–bar coupled algorithm to simulate tunnel excavation and support[J]. Chinese Journal of Engineering, 2023, 45(6): 1023-1033. doi: 10.13374/j.issn2095-9389.2022.03.25.005
Citation: LI Xiao-guang, LI Chang-hong, FENG Chun. A block–particle–bar coupled algorithm to simulate tunnel excavation and support[J]. Chinese Journal of Engineering, 2023, 45(6): 1023-1033. doi: 10.13374/j.issn2095-9389.2022.03.25.005

一種塊體–顆粒–桿件的耦合方法及其在隧道支護模擬中的應用

doi: 10.13374/j.issn2095-9389.2022.03.25.005
基金項目: 國際科技創新合作專項資助項目(2018YFE0101100);佛山市人民政府科技創新專項—產學研合作資助項目(BK20BE008)
詳細信息
    通訊作者:

    E-mail: fengchun@imech.ac.cn

  • 中圖分類號: TG142.71

A block–particle–bar coupled algorithm to simulate tunnel excavation and support

More Information
  • 摘要: 為了模擬隧道開挖過程中邊幫的失穩垮塌過程以及錨桿對隧道的支護過程,提出了一種基于罰彈簧的塊體–顆粒–桿件的耦合方法。該耦合方法基于連續–非連續的數值模擬方法(CDEM),采用離散顆粒簇表征隧道周邊松動圈以內的破碎巖體,采用塊體單元表征松動圈以外的完整巖體,采用桿件單元描述錨桿及錨索等桿系類支護結構,采用插值耦合的方式實現桿件單元與離散顆粒及塊體單元間力與位移的傳遞,從而實現高應力環境下隧道開挖失穩過程的模擬及支護效果的評價。顆粒與塊體之間采用1根法向線性彈簧及2根切向線性彈簧進行耦合,法向彈簧引入拉伸斷裂本構,切向彈簧引入Mohr–Coulomb脆性斷裂本構。桿件與顆粒及桿件與塊體之間的耦合模式基本一致,包含1根沿著桿件軸向的罰彈簧Sgn及1根垂直于桿件軸向的罰彈簧SgsSgn主要用于描述桿件與圍巖之間的拉拔效應及推壓效應,Sgs則主要用于描述桿件與圍巖之間的側向擠壓效應。圓形盾構隧道彈性場分析、預應力錨桿加固矩形巷道模擬、全長連接錨桿對巖塊的錨固作用分析、以及碎裂巖體中的隧道開挖支護效果分析等案例,證明了本文所述塊體–顆粒–桿件耦合算法的準確性及合理性。

     

  • 圖  1  塊體–顆粒–桿件耦合示意圖

    Figure  1.  Block–particle–bar coupling model

    圖  2  塊體–顆粒間的接觸耦合示意

    Figure  2.  Block–particle coupling model

    圖  3  塊體–桿件間的插值耦合示意

    Figure  3.  Block–bar coupling model

    圖  4  桿件與圍巖之間的拉拔(推壓)失效示意. (a)軸向視圖;(b)側向視圖

    Figure  4.  Pull and push failure between the bar and surrounding rock: (a) axial view; (b) lateral view

    圖  5  桿件與圍巖之間的側向擠壓失效示意. (a)軸向視圖;(b)側向視圖

    Figure  5.  Lateral compression failure between the bar and surrounding rock: (a) axial view; (b) lateral view

    圖  6  顆粒–桿件間的插值耦合示意

    Figure  6.  Particle–bar coupling model

    圖  7  圓形隧道數值模型

    Figure  7.  Numerical model of a circular shield tunnel

    圖  8  數值解與理論解的對比

    Figure  8.  Comparison of numerical and analytical solutions

    圖  9  矩形巷道預應力錨桿支護數值模型

    Figure  9.  Numerical model of a rectangular tunnel reinforced by prestressed rock bolts

    圖  10  最小主應力云圖

    Figure  10.  Contour of the minimal principal stress

    圖  11  典型錨桿上的軸力分布

    Figure  11.  Axial force distribution of typical anchors

    圖  12  錨桿加固巖塊的計算模型

    Figure  12.  Numerical model of rock reinforced by full-anchored bolts

    圖  13  錨桿加固后巖塊上的豎向應力云圖

    Figure  13.  Vertical stress contour of the rock reinforced by full-anchored bolts

    圖  14  錨桿上的軸力變化規律

    Figure  14.  Distribution law of the axial force on the bolts

    圖  15  隧道開挖支護模型

    Figure  15.  Tunnel excavation support model

    圖  16  三種模擬工況下隧道的總位移云圖. (a)工況A; (b)工況B; (c)工況C

    Figure  16.  Displacement magnitude contour of the tunnel under three numerical cases: (a) case A; (b) case B; (c) case C

    圖  17  錨桿中的軸力分布

    Figure  17.  Axial force distribution in bolts

    圖  18  錨桿的破壞狀態

    Figure  18.  Failure state of bolts

    圖  19  典型錨桿軸力的變化規律

    Figure  19.  Relationship between axial force and bolt length

    圖  20  典型錨桿軸向位移的變化規律

    Figure  20.  Relationship between axial displacement and bolt length

    表  1  力學參數

    Table  1.   Mechanical parameters

    MaterialsDensity/(kg·m–3)Elasticity
    modulus/
    GPa
    Poisson’s
    ratio
    Cohesion/MPaTensile
    strength/MPa
    Internal friction
    angle/(°)
    Dilation angle/(°)
    Surrounding rock2200100.3332510
    Broken zone220050.33112010
    Lining structure2500360.25843515
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Rahaman O, Kumar J. Stability analysis of twin horse-shoe shaped tunnels in rock mass. Tunn Undergr Space Technol, 2020, 98: 103354 doi: 10.1016/j.tust.2020.103354
    [2] Wu G J, Chen W Z, Rong C, et al. Elastoplastic damage evolution constitutive model of saturated rock with respect to volumetric strain in rock and its engineering application. Tunn Undergr Space Technol, 2020, 97: 103284 doi: 10.1016/j.tust.2020.103284
    [3] Wasilewski S. Gas-dynamic phenomena caused by rock mass tremors and rock bursts. Int J Min Sci Technol, 2020, 30(3): 413 doi: 10.1016/j.ijmst.2020.03.012
    [4] He M C, Li J Y, Ren F Q. Rock burst criterion based on clay mineral content. Arab J Geosci, 2020, 13(4): 185 doi: 10.1007/s12517-020-5199-x
    [5] Yang Z Q, Liu C, Zhu H Z, et al. Mechanism of rock burst caused by fracture of key strata during irregular working face mining and its prevention methods. Int J Min Sci Technol, 2019, 29(6): 889 doi: 10.1016/j.ijmst.2018.07.005
    [6] Chen W T, Huan Y, Fan P X. Numerical analysis on minimal safe distance between two opposite excavation faces of deep-buried tunnel. Appl Mech Mater, 2013, 353-356: 1315 doi: 10.4028/www.scientific.net/AMM.353-356.1315
    [7] Liu J, Liu X, Ren L. Research and discuss on development of deep tunnel bolt supporting technology. Appl Mech Mater, 2012, 204-208: 1542 doi: 10.4028/www.scientific.net/AMM.204-208.1542
    [8] Sun S R, Yue L, Wu J M, et al. Case study on influence of step blast-excavation on support systems of existing service tunnel with small interval. Adv Mech Eng, 2013, 5: 257457 doi: 10.1155/2013/257457
    [9] Liu K, Chen S L, Gu X Q. Analytical and numerical analyses of tunnel excavation problem using an extended drucker-prager model. Rock Mech Rock Eng, 2020, 53(4): 1777 doi: 10.1007/s00603-019-01992-5
    [10] Li W T, Yang N, Yang B, et al. An improved numerical simulation approach for arch-bolt supported tunnels with large deformation. Tunn Undergr Space Technol, 2018, 77: 1 doi: 10.1016/j.tust.2018.03.001
    [11] Wang F Y, Qian D L. Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement. Tunn Undergr Space Technol, 2018, 82: 66 doi: 10.1016/j.tust.2018.08.001
    [12] Wu L, Zhang X D, Zhang Z H, et al. 3D discrete element method modelling of tunnel construction impact on an adjacent tunnel. KSCE J Civ Eng, 2020, 24(2): 657 doi: 10.1007/s12205-020-2054-2
    [13] Boon C W, Houlsby G T, Utili S. Designing tunnel support in jointed rock masses via the DEM. Rock Mech Rock Eng, 2015, 48(2): 603 doi: 10.1007/s00603-014-0579-8
    [14] Wang X, Cai M. A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses. Rock Mech Rock Eng, 2020, 53(3): 1053 doi: 10.1007/s00603-019-01957-8
    [15] Chryssanthakis P, Barton N, Lorig L, et al. Numerical simulation of fiber reinforced shotcrete in a tunnel using the discrete element method. Int J Rock Mech Min Sci, 1997, 34(3-4): 54.e1
    [16] Huang F, Wang Y, Wen Y B, et al. The deformation and failure analysis of rock mass around tunnel by coupling finite difference method and discrete element method. Indian Geotech J, 2019, 49(4): 421 doi: 10.1007/s40098-018-0348-9
    [17] Yang Z M, Wu S C, Gao Y T, et al. Time and technique of rehabilitation for large deformation of tunnels in jointed rock masses based on FDM and DEM numerical modeling. Tunn Undergr Space Technol, 2018, 81: 669 doi: 10.1016/j.tust.2018.08.036
    [18] Saiang D. Stability analysis of the blast-induced damage zone by continuum and coupled continuum-discontinuum methods. Eng Geol, 2010, 116(1-2): 1 doi: 10.1016/j.enggeo.2009.07.011
    [19] Lisjak A, Grasselli G, Vietor T. Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci, 2014, 65: 96 doi: 10.1016/j.ijrmms.2013.10.006
    [20] Liu Q S, Xu X Y, Wu Z J. A GPU-based numerical manifold method for modeling the formation of the excavation damaged zone in deep rock tunnels. Comput Geotech, 2020, 118: 103351 doi: 10.1016/j.compgeo.2019.103351
    [21] Wang Y N, Zhao M H, Li S H, et al. Stochastic structural model of rock and soil aggregates by continuum-based discrete element method. Sci China Ser E-Technol Sci, 2005, 48(1): 95
    [22] Feng C, Li S H, Liu X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide. J Rock Mech Geotech Eng, 2014, 6(1): 26 doi: 10.1016/j.jrmge.2013.12.001
    [23] Cheng A H D. Poroelasticity. Switzerland: Springer International Publishing, 2016
  • 加載中
圖(20) / 表(1)
計量
  • 文章訪問數:  423
  • HTML全文瀏覽量:  170
  • PDF下載量:  86
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-25
  • 網絡出版日期:  2022-05-17
  • 刊出日期:  2023-05-31

目錄

    /

    返回文章
    返回