<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬礦膏體流變行為的顆粒細觀力學作用機理進展分析

李翠平 黃振華 阮竹恩 王少勇

李翠平, 黃振華, 阮竹恩, 王少勇. 金屬礦膏體流變行為的顆粒細觀力學作用機理進展分析[J]. 工程科學學報, 2022, 44(8): 1293-1305. doi: 10.13374/j.issn2095-9389.2022.03.24.004
引用本文: 李翠平, 黃振華, 阮竹恩, 王少勇. 金屬礦膏體流變行為的顆粒細觀力學作用機理進展分析[J]. 工程科學學報, 2022, 44(8): 1293-1305. doi: 10.13374/j.issn2095-9389.2022.03.24.004
LI Cui-ping, HUANG Zhen-hua, RUAN Zhu-en, WANG Shao-yong. Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines[J]. Chinese Journal of Engineering, 2022, 44(8): 1293-1305. doi: 10.13374/j.issn2095-9389.2022.03.24.004
Citation: LI Cui-ping, HUANG Zhen-hua, RUAN Zhu-en, WANG Shao-yong. Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines[J]. Chinese Journal of Engineering, 2022, 44(8): 1293-1305. doi: 10.13374/j.issn2095-9389.2022.03.24.004

金屬礦膏體流變行為的顆粒細觀力學作用機理進展分析

doi: 10.13374/j.issn2095-9389.2022.03.24.004
基金項目: 國家自然科學基金資助項目(52130404);中國博士后科學基金資助項目(2021M690011);廣東省基礎與應用基礎研究基金資助項目(2021A1515110161);北京科技大學順德研究生院博士后科研經費資助項目(2021BH011)
詳細信息
    通訊作者:

    E-mail: ziyuan0902rze@163.com

  • 中圖分類號: TD853

Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines

More Information
  • 摘要: 金屬礦膏體料漿顆粒間以及顆粒與水間的相互作用是膏體表現出復雜流變行為的根本原因。流變學是指導膏體充填工藝的重要基礎理論,然而膏體作為一種多尺度、高濃度顆粒懸浮液,其流變行為十分復雜,現有流變模型難以描述膏體在剪切作用下的流變行為。通過分析傳統膏體流變模型的局限性,綜述國內外文獻,以顆粒的表面特性以及顆粒與水的相互作用為出發點,剖析尾砂顆粒表面氫鍵網絡結構的形成原因及其影響因素,闡述受氫鍵網絡結構影響的剪切作用下顆粒間細觀摩擦力的來源及其變化,分析剪切過程中出現的剪切條帶、剪切稀化以及剪切增稠等流變行為的內在機理,歸納隨剪切速率變化的膏體流變行為的摩擦耗散規律,提出準確衡量膏體體系的宏觀摩擦力是分析其流變行為的關鍵,以便明晰膏體復雜流變行為發生的細觀力學機理,從而推動金屬礦膏體流變學從宏觀流變向細觀致因的發展。

     

  • 圖  1  膏體復雜流變行為的細觀力學致因

    Figure  1.  Micromechanical causes of complex rheological behavior of the paste

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [2] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11

    程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11
    [3] Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassifiedtailings(Part 1): Concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803

    吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803
    [4] Li C P, Yan B H, Hou H Z, et al. Rheological behavior of solid-liquid conversion stage of unclassified tailings backfill paste. Chin J Nonferrous Met, 2020, 30(5): 1209 doi: 10.11817/j.ysxb.1004.0609.2020-39505

    李翠平, 顏丙恒, 侯賀子, 等. 全尾砂充填膏體固-流轉換階段的流變行為. 中國有色金屬學報, 2020, 30(5):1209 doi: 10.11817/j.ysxb.1004.0609.2020-39505
    [5] Chatté G, Comtet J, Niguès A, et al. Shear thinning in non-Brownian suspensions. Soft Matter, 2018, 14(6): 879 doi: 10.1039/C7SM01963G
    [6] Ness C, Sun J. Flow regime transitions in dense non-Brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys Rev E, 2015, 91: 012201 doi: 10.1103/PhysRevE.91.012201
    [7] Leighton D, Acrivos A. Viscous resuspension. Chem Eng Sci, 1986, 41(6): 1377 doi: 10.1016/0009-2509(86)85225-3
    [8] Trulsson M, DeGiuli E, Wyart M. Effect of friction on dense suspension flows of hard particles. Phys Rev E, 2017, 95: 012605 doi: 10.1103/PhysRevE.95.012605
    [9] Lavrenteva O M, Nir A. Shear-induced particles migration in a Bingham fluid. J Non Newton Fluid Mech, 2016, 238: 80 doi: 10.1016/j.jnnfm.2016.11.002
    [10] Brown E, Jaeger H M. The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol, 2012, 56(4): 875 doi: 10.1122/1.4709423
    [11] Neelakantan R, Vaezi G F, Sanders R S. Effect of shear on the yield stress and aggregate structure of flocculant-dosed, concentrated kaolinite suspensions. Miner Eng, 2018, 123: 95 doi: 10.1016/j.mineng.2018.03.016
    [12] Zhang A N, Murch W L, Einarsson J, et al. Lift and drag force on a spherical particle in a viscoelastic shear flow. J Non Newton Fluid Mech, 2020, 280: 104279 doi: 10.1016/j.jnnfm.2020.104279
    [13] Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta, 2009, 48: 831
    [14] Ness C, Sun J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter, 2016, 12(3): 914 doi: 10.1039/C5SM02326B
    [15] More R V, Ardekani A M. Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. Phys Rev E, 2021, 103(6): 062610 doi: 10.1103/PhysRevE.103.062610
    [16] Papadopoulou A, Gillissen J J, Wilson H J, et al. On the shear thinning of non-Brownian suspensions: Friction or adhesion? J Non Newton Fluid Mech, 2020, 281: 104298
    [17] Hsu C P, Mandal J, Ramakrishna S N, et al. Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nat Commun, 2021, 12: 1477 doi: 10.1038/s41467-021-21580-y
    [18] Erba? A, Horinek D, Netz R R. Viscous friction of hydrogen-bonded matter. J Am Chem Soc, 2012, 134(1): 623 doi: 10.1021/ja209454a
    [19] James N M, Han E D, de la Cruz R A L, et al. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat Mater, 2018, 17(11): 965 doi: 10.1038/s41563-018-0175-5
    [20] Xue Z L, Zhang Y Z, Bao Y H, et al. Study on rheological property of unclassified-tailing slurry considering the temperature effect. Met Mine, 2016(10): 35 doi: 10.3969/j.issn.1001-1250.2016.10.008

    薛振林, 張友志, 鮑亞豪, 等. 考慮溫度影響的全尾砂料漿流變性能研究. 金屬礦山, 2016(10):35 doi: 10.3969/j.issn.1001-1250.2016.10.008
    [21] Lv Y Y, Zhu W, Han T T. Mechanism underlying bonding water film effect on rheological parameters. Adv Mater Sci Eng, 2016, 2016: 8451391
    [22] Peng Y M, Ma K L, Yu L S, et al. Applicability of rheological parameters characterization of fresh cement paste under different rheological models. J Railw Sci Eng, 2021, 18(4): 934

    彭逸明, 馬昆林, 于連山, 等. 新拌水泥漿體在不同流變模型下流變參數表征適用性研究. 鐵道科學與工程學報, 2021, 18(4):934
    [23] Li S, Wang X M, Zhang Q L, et al. Time-varying characteristic of paste-like super-fine unclassified tailings in long self-flowing transportation. J Northeast Univ (Nat Sci), 2016, 37(7): 1045 doi: 10.3969/j.issn.1005-3026.2016.07.028

    李帥, 王新民, 張欽禮, 等. 超細全尾砂似膏體長距離自流輸送的時變特性. 東北大學學報(自然科學版), 2016, 37(7):1045 doi: 10.3969/j.issn.1005-3026.2016.07.028
    [24] Yahia A, Khayat K H. Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cem Concr Res, 2001, 31(5): 731 doi: 10.1016/S0008-8846(01)00476-8
    [25] Lee J K, Ko J, Kim Y S. Rheology of fly ash mixed tailings slurries and applicability of prediction models. Minerals, 2017, 7(9): 165 doi: 10.3390/min7090165
    [26] Güllü H. Comparison of rheological models for jet grout cement mixtures with various stabilizers. Constr Build Mater, 2016, 127: 220 doi: 10.1016/j.conbuildmat.2016.09.129
    [27] Lerner E, Düring G, Wyart M. A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc Natl Acad Sci 2012, 109(13): 4798
    [28] Feys D, Verhoeven R, De Schutter G. Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl Rheol, 2007, 17(5): 56244
    [29] Paredes J, Shahidzadeh-Bonn N, Bonn D. Shear banding in thixotropic and normal emulsions. J Phys:Condens Matter, 2011, 23(28): 284116 doi: 10.1088/0953-8984/23/28/284116
    [30] Larson R G, Wei Y F. A review of thixotropy and its rheological modeling. J Rheol, 2019, 63(3): 477 doi: 10.1122/1.5055031
    [31] Ley-Hernández A M, Feys D. Effect of sedimentation on the rheological properties of cement pastes. Mater Struct, 2021, 54: 47 doi: 10.1617/s11527-021-01619-8
    [32] Abbott J R, Tetlow N, Graham A L, et al. Experimental observations of particle migration in concentrated suspensions: Couette flow. J Rheol, 1991, 35(5): 773 doi: 10.1122/1.550157
    [33] Han K D, Xiao J, Zhang Z D, et al. Effect of particle size distribution on flocculation and its growth in cement-ground limestone suspensions. Constr Build Mater, 2020, 262: 120047 doi: 10.1016/j.conbuildmat.2020.120047
    [34] Jin Z S, Song Y P, Zhang J F, et al. Research on the measurement of the interaction forces between colloidal particles based on atomic force microscopy. J Chin Electron Microsc Soc, 2016, 35(2): 132 doi: 10.3969/j.issn.1000-6281.2016.02.006

    金子嵩, 宋云鵬, 張金鳳, 等. 基于原子力顯微鏡的膠體顆粒相互作用力測量研究. 電子顯微學報, 2016, 35(2):132 doi: 10.3969/j.issn.1000-6281.2016.02.006
    [35] Syngouna V I, Chrysikopoulos C V. Cotransport of clay colloids and viruses in water saturated porous media. Colloids Surf A Physicochem Eng Aspects, 2013, 416: 56 doi: 10.1016/j.colsurfa.2012.10.018
    [36] Al Mahrouqi D, Vinogradov J, Jackson M D. Zeta potential of artificial and natural calcite in aqueous solution. Adv Colloid Interface Sci, 2017, 240: 60 doi: 10.1016/j.cis.2016.12.006
    [37] Th?gersen K, Dabrowski M, Malthe-S?renssen A. Transient cluster formation in sheared non-Brownian suspensions. Phys Rev E, 2016, 93(2): 022611 doi: 10.1103/PhysRevE.93.022611
    [38] Xiao J, Han K D, Zuo S H, et al. Relationship between structural build-up and interparticle forces of cement-ground limestone pastes. J Build Mater, 2021, 24(3): 447 doi: 10.3969/j.issn.1007-9629.2021.03.001

    肖佳, 韓凱東, 左勝浩, 等. 水泥-石灰石粉漿體結構建立與顆粒間作用力的關系. 建筑材料學報, 2021, 24(3):447 doi: 10.3969/j.issn.1007-9629.2021.03.001
    [39] Gao J, Mwasame P M, Wagner N J. Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C4mim][BF4]. J Rheol, 2017, 61(3): 525 doi: 10.1122/1.4979685
    [40] Lassaigne M, Blais B, Fradette L, et al. Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank. Chem Eng Res Des, 2016, 108: 55 doi: 10.1016/j.cherd.2016.01.005
    [41] Russel W B, Gast A P. Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows. J Chem Phys, 1986, 84(3): 1815 doi: 10.1063/1.450428
    [42] Singh A, Pednekar S, Chun J, et al. From yielding to shear jamming in a cohesive frictional suspension. Phys Rev Lett, 2019, 122(9): 098004 doi: 10.1103/PhysRevLett.122.098004
    [43] Mujumdar A, Beris A N, Metzner A B. Transient phenomena in thixotropic systems. J Non Newton Fluid Mech, 2002, 102(2): 157 doi: 10.1016/S0377-0257(01)00176-8
    [44] James N, Hsu C P, Spencer N D, et al. Tuning interparticle hydrogen bonding in shear-jamming suspensions: Kinetic effects and consequences for tribology and rheology. J Phys Chem Lett, 2019, 10(8): 1663 doi: 10.1021/acs.jpclett.9b00135
    [45] Stillinger F H. Water revisited. Science, 1980, 209(4455): 451 doi: 10.1126/science.209.4455.451
    [46] Xiao C, Shi P F, Yan W M, et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Colloids Interfaces, 2019, 3(3): 55 doi: 10.3390/colloids3030055
    [47] Saint-Michel B, Manneville S, Meeker S, et al. X-ray radiography of viscous resuspension. Phys Fluids, 2019, 31(10): 103301 doi: 10.1063/1.5103271
    [48] Liao X L, Min F F, Liu L Y. A Study on interaction mechanism between lignite particle interface and slime water. Acta Mineral Sin, 2018, 38(1): 85

    廖祥磊, 閔凡飛, 劉令云. 褐煤顆粒界面與煤泥水溶液相互作用機制. 礦物學報, 2018, 38(1):85
    [49] Li G, Wang K L, Lu C J. Effect of particle aggregates on the surface properties of amphiphilic SiO2 particles in anhydrous foam. Chem J Chin Univ, 2020, 41(9): 2038 doi: 10.7503/cjcu20200296

    李根, 王克亮, 逯春晶. 顆粒聚集體對兩性SiO2顆粒無水泡沫表面性質的影響. 高等學校化學學報, 2020, 41(9):2038 doi: 10.7503/cjcu20200296
    [50] Duan X M. Mechanical effects of solid water on the particle skeleton of soil: Mechanism analysis. Geofluids, 2021, 2021: 9969023
    [51] Masuda H, Tsuda K, Matsui K, et al. Effect of shear rate distribution on particle aggregation in a stirred vessel. Chem Eng Technol, 2017, 40(3): 493 doi: 10.1002/ceat.201600332
    [52] Israelachvili J N, Pashley R M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 1983, 306(5940): 249 doi: 10.1038/306249a0
    [53] Richards J A, O’Neill R E, Poon W C K. Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheol Acta, 2021, 60(2-3): 97 doi: 10.1007/s00397-020-01247-z
    [54] Pfeifer J C, Bischoff T, Ehlers G, et al. Order-disorder transitions in a sheared many-body system. Phys Rev E Stat Nonlinear Soft Matter Phys, 2015, 92(6): 062208 doi: 10.1103/PhysRevE.92.062208
    [55] Masschaele K, Fransaer J, Vermant J. Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions. Soft Matter, 2011, 7(17): 7717 doi: 10.1039/c1sm05271c
    [56] Fall A, Bertrand F, Ovarlez G, et al. Yield stress and shear banding in granular suspensions. Phys Rev Lett, 2009, 103(17): 178301 doi: 10.1103/PhysRevLett.103.178301
    [57] Madraki Y, Oakley A, Nguyen le A, et al. Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition. J Rheol, 2020, 64(2): 227 doi: 10.1122/1.5129680
    [58] Richards J A, Guy B M, Blanco E, et al. The role of friction in the yielding of adhesive non-Brownian suspensions. J Rheol, 2020, 64(2): 405 doi: 10.1122/1.5132395
    [59] Lobry L, Lemaire E, Blanc F, et al. Shear thinning in non-Brownian suspensions explained by variable friction between particles. J Fluid Mech, 2019, 860: 682 doi: 10.1017/jfm.2018.881
    [60] Guazzelli é, Pouliquen O. Rheology of dense granular suspensions. J Fluid Mech, 2018, 852: P1 doi: 10.1017/jfm.2018.548
    [61] Guy B M, Hermes M, Poon W C K. Towards a unified description of the rheology of hard-particle suspensions. Phys Rev Lett, 2015, 115(8): 088304
    [62] Ovarlez G, Bertrand F, Rodts S. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol, 2006, 50(3): 259 doi: 10.1122/1.2188528
    [63] Kerisit S. Water structure at hematite-water interfaces. Geochimica Cosmochimica Acta, 2011, 75(8): 2043 doi: 10.1016/j.gca.2011.01.026
    [64] Murray J S, Politzer P. Hydrogen bonding: A Coulombic σ-hole interaction. J Indian I Sci, 2020, 100(1): 21 doi: 10.1007/s41745-019-00139-3
    [65] Fuerstenau D W, Pradip. Zeta potentials in the flotation of oxide and silicate minerals. Adv Colloid Interface Sci, 2005, 114-115: 9 doi: 10.1016/j.cis.2004.08.006
    [66] Shen Y R, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem Rev, 2006, 106(4): 1140 doi: 10.1021/cr040377d
    [67] Xi Z Z. Electromotion phenomena of cement particle and study of foam concrete. Concrete, 2000(11): 48

    習志臻. 水泥顆粒的電動現象及泡沫混凝土的研究. 混凝土, 2000(11):48
    [68] Israelachvili J N. Forces between surfaces in liquids. Adv Colloid Interface Sci, 1982, 16(1): 31 doi: 10.1016/0001-8686(82)85004-5
    [69] Ye?ilba? M, Boily J F. Particle size controls on water adsorption and condensation regimes at mineral surfaces. Sci Rep, 2016, 6: 32136 doi: 10.1038/srep32136
    [70] Jab?oński M. Intramolecular hydrogen bonding 2021. Molecules, 2021, 26(20): 6319 doi: 10.3390/molecules26206319
    [71] Kebede G, Mitev P D, Broqvist P, et al. Hydrogen-bond relations for surface OH species. J Phys Chem C, 2018, 122(9): 4849 doi: 10.1021/acs.jpcc.7b10981
    [72] Yamakata A, Osawa M. Cation-dependent restructure of the electric double layer on CO-covered Pt electrodes: Difference between hydrophilic and hydrophobic cations. J Electroanal Chem, 2017, 800: 19 doi: 10.1016/j.jelechem.2016.12.034
    [73] Wong P L, Huang P, Meng Y. The effect of the electric double layer on a very thin water lubricating film. Tribol Lett, 2003, 14(3): 197 doi: 10.1023/A:1022320531293
    [74] Joshi N, Romanias M N, Riffault V, et al. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory. Aeolian Res, 2017, 27: 35 doi: 10.1016/j.aeolia.2017.06.001
    [75] Morag J, Dishon M, Sivan U. The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the hofmeister universality and its reversal. Langmuir, 2013, 29(21): 6317 doi: 10.1021/la400507n
    [76] Johansen R T. Water-vapor adsorption on clays. Clays Clay Miner, 1957, 6(1): 249 doi: 10.1346/CCMN.1957.0060119
    [77] Ruckenstein E, Manciu M. The coupling between the hydration and double layer interactions. Langmuir, 2002, 18(20): 7584 doi: 10.1021/la020435v
    [78] Jiang E, Huo J, Luo Y, et al. Influence of electric field on nanoconfined proton behaviours: A molecular dynamics simulation. J Mol Liq, 2020, 319: 114113 doi: 10.1016/j.molliq.2020.114113
    [79] Li H L, Xu W N, Jia F F, et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater, 2020, 27(7): 857 doi: 10.1007/s12613-020-2078-0
    [80] Karaborni S, Smit B, Heidug W, et al. The swelling of clays: Molecular simulations of the hydration of montmorillonite. Science, 1996, 271(5252): 1102 doi: 10.1126/science.271.5252.1102
    [81] Osipov V I. Nanofilms of adsorbed water in clay: Mechanism of formation and properties. Water Resour, 2012, 39(7): 709 doi: 10.1134/S009780781207010X
    [82] Ranieri U, Giura P, Gorelli F A, et al. Dynamical crossover in hot dense water: The hydrogen bond role. J Phys Chem B, 2016, 120(34): 9051 doi: 10.1021/acs.jpcb.6b04142
    [83] Berenguer R A, Lima N B, Lima V M E, et al. The role of hydrogen bonds on the mechanical properties of cement-based mortars applied to concrete surfaces. Cem Concr Compos, 2021, 115: 103848 doi: 10.1016/j.cemconcomp.2020.103848
    [84] Sanders S E, Vanselous H, Petersen P B. Water at surfaces with tunable surface chemistries. J Phys Condens Matter, 2018, 30(11): 113001 doi: 10.1088/1361-648X/aaacb5
    [85] Donose B C, Vakarelski I U, Higashitani K. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir, 2005, 21(5): 1834 doi: 10.1021/la047609o
    [86] Gumulya M M, Horsley R R, Wilson K C, et al. A new fluid model for particles settling in a viscoplastic fluid. Chem Eng Sci, 2011, 66(4): 729 doi: 10.1016/j.ces.2010.11.037
    [87] Chen Y S, Zhang W, Yu L. Hydrogen bonding slows down surface diffusion of molecular glasses. J Phys Chem B, 2016, 120(32): 8007 doi: 10.1021/acs.jpcb.6b05658
    [88] Yamaguchi T. Structural origin of shear viscosity of liquid water. J Phys Chem B, 2018, 122(3): 1255 doi: 10.1021/acs.jpcb.7b10893
    [89] Perticaroli S, Mostofian B, Ehlers G, et al. Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Phys Chem Chem Phys, 2017, 19(38): 25859 doi: 10.1039/C7CP04013J
    [90] Koos E, Willenbacher N. Capillary forces in suspension rheology. Science, 2011, 331(6019): 897 doi: 10.1126/science.1199243
    [91] Papadopoulou A, Gillissen J J J, Tiwari M K, et al. Effect of particle specific surface area on the rheology of non-Brownian silica suspensions. Materials, 2020, 13(20): 4628 doi: 10.3390/ma13204628
    [92] Blanc F, D'Ambrosio E, Lobry L, et al. Universal scaling law in frictional non-Brownian suspensions. Phys Rev Fluids, 2018, 3(11): 114303 doi: 10.1103/PhysRevFluids.3.114303
    [93] Katainen J, Paajanen M, Ahtola E, et al. Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci, 2006, 304(2): 524 doi: 10.1016/j.jcis.2006.09.015
    [94] Xing B D, Fan W Y, Lyu Y C, et al. Influence of particle mineralogy and size on the morphological characteristics of mineral fillers. J Mater Res Technol, 2021, 15: 3995 doi: 10.1016/j.jmrt.2021.10.026
    [95] Udvardi B, Kovács I J, Fancsik T, et al. Effects of particle size on the attenuated total reflection spectrum of minerals. Appl Spectrosc, 2017, 71(6): 1157 doi: 10.1177/0003702816670914
    [96] Long H C, Xia J X, Cao B. Quantitative analysis on water status in coal-water slurry based on low field nuclear magnetic resonance technology. J Sediment Res, 2018, 43(3): 44

    龍海潮, 夏建新, 曹斌. 基于低場核磁共振技術的水煤漿水分狀態與定量分析. 泥沙研究, 2018, 43(3):44
    [97] Quezada G R, Rozas R E, Toledo P G. Molecular dynamics simulations of quartz (101)–water and corundum (001)–water interfaces: Effect of surface charge and ions on cation adsorption, water orientation, and surface charge reversal. J Phys Chem C, 2017, 121(45): 25271 doi: 10.1021/acs.jpcc.7b08836
    [98] Min F F, Peng C L, Song S X. Hydration layers on clay mineral surfaces in aqueous solutions: A review/warstwy uwodnione Na powierzchni minera?ów ilastych W roztworach wodnych: Przegl?d. Arch Min Sci, 2014, 59(2): 489
    [99] Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 2006, 312(5778): 1375 doi: 10.1126/science.1125261
    [100] Franks G V. Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction. J Colloid Interface Sci, 2002, 249(1): 44 doi: 10.1006/jcis.2002.8250
    [101] Kilpatrick J I, Loh S H, Jarvis S P. Directly probing the effects of ions on hydration forces at interfaces. J Am Chem Soc, 2013, 135(7): 2628 doi: 10.1021/ja310255s
    [102] DeWalt-Kerian E L, Kim S, Azam M S, et al. pH-dependent inversion of hofmeister trends in the water structure of the electrical double layer. J Phys Chem Lett, 2017, 8(13): 2855 doi: 10.1021/acs.jpclett.7b01005
    [103] Oh M I, Gupta M, Oh C I, et al. Understanding the effect of nanoconfinement on the structure of water hydrogen bond networks. Phys Chem Chem Phys, 2019, 21(47): 26237 doi: 10.1039/C9CP05014K
    [104] Rehl B, Gibbs J M. Role of ions on the surface-bound water structure at the silica/water interface: Identifying the spectral signature of stability. J Phys Chem Lett, 2021, 12(11): 2854 doi: 10.1021/acs.jpclett.0c03565
    [105] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [106] Churayev N V, Sobolev V D, Zorin Z M. Measurement of viscosity of liquids in quartz capillaries. Spec Discuss Faraday Soc, 1970, 1: 213 doi: 10.1039/sd9700100213
    [107] Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A Physicochem Eng Aspects, 2000, 173(1-3): 1
    [108] Raghavan S R, Walls H J, Khan S A. Rheology of silica dispersions in organic liquids: ? new evidence for solvation forces dictated by hydrogen bonding. Langmuir, 2000, 16(21): 7920 doi: 10.1021/la991548q
    [109] Arshad M, Maali A, Claudet C, et al. An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions. Soft Matter, 2021, 17(25): 6088 doi: 10.1039/D1SM00254F
    [110] Miller J D, Wang X M, Jin J Q, et al. Interfacial water structure and the wetting of mineral surfaces. Int J Miner Process, 2016, 156: 62 doi: 10.1016/j.minpro.2016.02.004
    [111] Leighton D, Acrivos A. The shear-induced migration of particles in concentrated suspensions. J Fluid Mech, 1987, 181: 415 doi: 10.1017/S0022112087002155
    [112] Morris J F. A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta, 2009, 48(8): 909 doi: 10.1007/s00397-009-0352-1
    [113] Tanner R I, Dai S C. Particle roughness and rheology in noncolloidal suspensions. J Rheol, 2016, 60(4): 809 doi: 10.1122/1.4954643
    [114] Wilms P, Hinrichs J, Kohlus R. Macroscopic rheology of non-Brownian suspensions at high shear rates: The influence of solid volume fraction and non-Newtonian behaviour of the liquid phase. Rheol Acta, 2022, 61(2): 123 doi: 10.1007/s00397-021-01320-1
    [115] Blanc F, Peters F, Lemaire E. Local transient rheological behavior of concentrated suspensions. J Rheol, 2011, 55(4): 835 doi: 10.1122/1.3582848
    [116] Olanrewaju K O, Bae T H, Nair S, et al. The rheology of suspensions of porous zeolite particles in polymer solutions. Rheol Acta, 2014, 53(2): 133 doi: 10.1007/s00397-013-0746-y
  • 加載中
圖(1)
計量
  • 文章訪問數:  637
  • HTML全文瀏覽量:  252
  • PDF下載量:  88
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-24
  • 網絡出版日期:  2022-05-05
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回