[1] |
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
|
[2] |
Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11
|
[3] |
Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassifiedtailings(Part 1): Concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803
|
[4] |
Li C P, Yan B H, Hou H Z, et al. Rheological behavior of solid-liquid conversion stage of unclassified tailings backfill paste. Chin J Nonferrous Met, 2020, 30(5): 1209 doi: 10.11817/j.ysxb.1004.0609.2020-39505李翠平, 顏丙恒, 侯賀子, 等. 全尾砂充填膏體固-流轉換階段的流變行為. 中國有色金屬學報, 2020, 30(5):1209 doi: 10.11817/j.ysxb.1004.0609.2020-39505
|
[5] |
Chatté G, Comtet J, Niguès A, et al. Shear thinning in non-Brownian suspensions. Soft Matter, 2018, 14(6): 879 doi: 10.1039/C7SM01963G
|
[6] |
Ness C, Sun J. Flow regime transitions in dense non-Brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys Rev E, 2015, 91: 012201 doi: 10.1103/PhysRevE.91.012201
|
[7] |
Leighton D, Acrivos A. Viscous resuspension. Chem Eng Sci, 1986, 41(6): 1377 doi: 10.1016/0009-2509(86)85225-3
|
[8] |
Trulsson M, DeGiuli E, Wyart M. Effect of friction on dense suspension flows of hard particles. Phys Rev E, 2017, 95: 012605 doi: 10.1103/PhysRevE.95.012605
|
[9] |
Lavrenteva O M, Nir A. Shear-induced particles migration in a Bingham fluid. J Non Newton Fluid Mech, 2016, 238: 80 doi: 10.1016/j.jnnfm.2016.11.002
|
[10] |
Brown E, Jaeger H M. The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol, 2012, 56(4): 875 doi: 10.1122/1.4709423
|
[11] |
Neelakantan R, Vaezi G F, Sanders R S. Effect of shear on the yield stress and aggregate structure of flocculant-dosed, concentrated kaolinite suspensions. Miner Eng, 2018, 123: 95 doi: 10.1016/j.mineng.2018.03.016
|
[12] |
Zhang A N, Murch W L, Einarsson J, et al. Lift and drag force on a spherical particle in a viscoelastic shear flow. J Non Newton Fluid Mech, 2020, 280: 104279 doi: 10.1016/j.jnnfm.2020.104279
|
[13] |
Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta, 2009, 48: 831
|
[14] |
Ness C, Sun J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter, 2016, 12(3): 914 doi: 10.1039/C5SM02326B
|
[15] |
More R V, Ardekani A M. Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. Phys Rev E, 2021, 103(6): 062610 doi: 10.1103/PhysRevE.103.062610
|
[16] |
Papadopoulou A, Gillissen J J, Wilson H J, et al. On the shear thinning of non-Brownian suspensions: Friction or adhesion? J Non Newton Fluid Mech, 2020, 281: 104298
|
[17] |
Hsu C P, Mandal J, Ramakrishna S N, et al. Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nat Commun, 2021, 12: 1477 doi: 10.1038/s41467-021-21580-y
|
[18] |
Erba? A, Horinek D, Netz R R. Viscous friction of hydrogen-bonded matter. J Am Chem Soc, 2012, 134(1): 623 doi: 10.1021/ja209454a
|
[19] |
James N M, Han E D, de la Cruz R A L, et al. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat Mater, 2018, 17(11): 965 doi: 10.1038/s41563-018-0175-5
|
[20] |
Xue Z L, Zhang Y Z, Bao Y H, et al. Study on rheological property of unclassified-tailing slurry considering the temperature effect. Met Mine, 2016(10): 35 doi: 10.3969/j.issn.1001-1250.2016.10.008薛振林, 張友志, 鮑亞豪, 等. 考慮溫度影響的全尾砂料漿流變性能研究. 金屬礦山, 2016(10):35 doi: 10.3969/j.issn.1001-1250.2016.10.008
|
[21] |
Lv Y Y, Zhu W, Han T T. Mechanism underlying bonding water film effect on rheological parameters. Adv Mater Sci Eng, 2016, 2016: 8451391
|
[22] |
Peng Y M, Ma K L, Yu L S, et al. Applicability of rheological parameters characterization of fresh cement paste under different rheological models. J Railw Sci Eng, 2021, 18(4): 934彭逸明, 馬昆林, 于連山, 等. 新拌水泥漿體在不同流變模型下流變參數表征適用性研究. 鐵道科學與工程學報, 2021, 18(4):934
|
[23] |
Li S, Wang X M, Zhang Q L, et al. Time-varying characteristic of paste-like super-fine unclassified tailings in long self-flowing transportation. J Northeast Univ (Nat Sci), 2016, 37(7): 1045 doi: 10.3969/j.issn.1005-3026.2016.07.028李帥, 王新民, 張欽禮, 等. 超細全尾砂似膏體長距離自流輸送的時變特性. 東北大學學報(自然科學版), 2016, 37(7):1045 doi: 10.3969/j.issn.1005-3026.2016.07.028
|
[24] |
Yahia A, Khayat K H. Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cem Concr Res, 2001, 31(5): 731 doi: 10.1016/S0008-8846(01)00476-8
|
[25] |
Lee J K, Ko J, Kim Y S. Rheology of fly ash mixed tailings slurries and applicability of prediction models. Minerals, 2017, 7(9): 165 doi: 10.3390/min7090165
|
[26] |
Güllü H. Comparison of rheological models for jet grout cement mixtures with various stabilizers. Constr Build Mater, 2016, 127: 220 doi: 10.1016/j.conbuildmat.2016.09.129
|
[27] |
Lerner E, Düring G, Wyart M. A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc Natl Acad Sci 2012, 109(13): 4798
|
[28] |
Feys D, Verhoeven R, De Schutter G. Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl Rheol, 2007, 17(5): 56244
|
[29] |
Paredes J, Shahidzadeh-Bonn N, Bonn D. Shear banding in thixotropic and normal emulsions. J Phys:Condens Matter, 2011, 23(28): 284116 doi: 10.1088/0953-8984/23/28/284116
|
[30] |
Larson R G, Wei Y F. A review of thixotropy and its rheological modeling. J Rheol, 2019, 63(3): 477 doi: 10.1122/1.5055031
|
[31] |
Ley-Hernández A M, Feys D. Effect of sedimentation on the rheological properties of cement pastes. Mater Struct, 2021, 54: 47 doi: 10.1617/s11527-021-01619-8
|
[32] |
Abbott J R, Tetlow N, Graham A L, et al. Experimental observations of particle migration in concentrated suspensions: Couette flow. J Rheol, 1991, 35(5): 773 doi: 10.1122/1.550157
|
[33] |
Han K D, Xiao J, Zhang Z D, et al. Effect of particle size distribution on flocculation and its growth in cement-ground limestone suspensions. Constr Build Mater, 2020, 262: 120047 doi: 10.1016/j.conbuildmat.2020.120047
|
[34] |
Jin Z S, Song Y P, Zhang J F, et al. Research on the measurement of the interaction forces between colloidal particles based on atomic force microscopy. J Chin Electron Microsc Soc, 2016, 35(2): 132 doi: 10.3969/j.issn.1000-6281.2016.02.006金子嵩, 宋云鵬, 張金鳳, 等. 基于原子力顯微鏡的膠體顆粒相互作用力測量研究. 電子顯微學報, 2016, 35(2):132 doi: 10.3969/j.issn.1000-6281.2016.02.006
|
[35] |
Syngouna V I, Chrysikopoulos C V. Cotransport of clay colloids and viruses in water saturated porous media. Colloids Surf A Physicochem Eng Aspects, 2013, 416: 56 doi: 10.1016/j.colsurfa.2012.10.018
|
[36] |
Al Mahrouqi D, Vinogradov J, Jackson M D. Zeta potential of artificial and natural calcite in aqueous solution. Adv Colloid Interface Sci, 2017, 240: 60 doi: 10.1016/j.cis.2016.12.006
|
[37] |
Th?gersen K, Dabrowski M, Malthe-S?renssen A. Transient cluster formation in sheared non-Brownian suspensions. Phys Rev E, 2016, 93(2): 022611 doi: 10.1103/PhysRevE.93.022611
|
[38] |
Xiao J, Han K D, Zuo S H, et al. Relationship between structural build-up and interparticle forces of cement-ground limestone pastes. J Build Mater, 2021, 24(3): 447 doi: 10.3969/j.issn.1007-9629.2021.03.001肖佳, 韓凱東, 左勝浩, 等. 水泥-石灰石粉漿體結構建立與顆粒間作用力的關系. 建筑材料學報, 2021, 24(3):447 doi: 10.3969/j.issn.1007-9629.2021.03.001
|
[39] |
Gao J, Mwasame P M, Wagner N J. Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C4mim][BF4]. J Rheol, 2017, 61(3): 525 doi: 10.1122/1.4979685
|
[40] |
Lassaigne M, Blais B, Fradette L, et al. Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank. Chem Eng Res Des, 2016, 108: 55 doi: 10.1016/j.cherd.2016.01.005
|
[41] |
Russel W B, Gast A P. Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows. J Chem Phys, 1986, 84(3): 1815 doi: 10.1063/1.450428
|
[42] |
Singh A, Pednekar S, Chun J, et al. From yielding to shear jamming in a cohesive frictional suspension. Phys Rev Lett, 2019, 122(9): 098004 doi: 10.1103/PhysRevLett.122.098004
|
[43] |
Mujumdar A, Beris A N, Metzner A B. Transient phenomena in thixotropic systems. J Non Newton Fluid Mech, 2002, 102(2): 157 doi: 10.1016/S0377-0257(01)00176-8
|
[44] |
James N, Hsu C P, Spencer N D, et al. Tuning interparticle hydrogen bonding in shear-jamming suspensions: Kinetic effects and consequences for tribology and rheology. J Phys Chem Lett, 2019, 10(8): 1663 doi: 10.1021/acs.jpclett.9b00135
|
[45] |
Stillinger F H. Water revisited. Science, 1980, 209(4455): 451 doi: 10.1126/science.209.4455.451
|
[46] |
Xiao C, Shi P F, Yan W M, et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Colloids Interfaces, 2019, 3(3): 55 doi: 10.3390/colloids3030055
|
[47] |
Saint-Michel B, Manneville S, Meeker S, et al. X-ray radiography of viscous resuspension. Phys Fluids, 2019, 31(10): 103301 doi: 10.1063/1.5103271
|
[48] |
Liao X L, Min F F, Liu L Y. A Study on interaction mechanism between lignite particle interface and slime water. Acta Mineral Sin, 2018, 38(1): 85廖祥磊, 閔凡飛, 劉令云. 褐煤顆粒界面與煤泥水溶液相互作用機制. 礦物學報, 2018, 38(1):85
|
[49] |
Li G, Wang K L, Lu C J. Effect of particle aggregates on the surface properties of amphiphilic SiO2 particles in anhydrous foam. Chem J Chin Univ, 2020, 41(9): 2038 doi: 10.7503/cjcu20200296李根, 王克亮, 逯春晶. 顆粒聚集體對兩性SiO2顆粒無水泡沫表面性質的影響. 高等學校化學學報, 2020, 41(9):2038 doi: 10.7503/cjcu20200296
|
[50] |
Duan X M. Mechanical effects of solid water on the particle skeleton of soil: Mechanism analysis. Geofluids, 2021, 2021: 9969023
|
[51] |
Masuda H, Tsuda K, Matsui K, et al. Effect of shear rate distribution on particle aggregation in a stirred vessel. Chem Eng Technol, 2017, 40(3): 493 doi: 10.1002/ceat.201600332
|
[52] |
Israelachvili J N, Pashley R M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 1983, 306(5940): 249 doi: 10.1038/306249a0
|
[53] |
Richards J A, O’Neill R E, Poon W C K. Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheol Acta, 2021, 60(2-3): 97 doi: 10.1007/s00397-020-01247-z
|
[54] |
Pfeifer J C, Bischoff T, Ehlers G, et al. Order-disorder transitions in a sheared many-body system. Phys Rev E Stat Nonlinear Soft Matter Phys, 2015, 92(6): 062208 doi: 10.1103/PhysRevE.92.062208
|
[55] |
Masschaele K, Fransaer J, Vermant J. Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions. Soft Matter, 2011, 7(17): 7717 doi: 10.1039/c1sm05271c
|
[56] |
Fall A, Bertrand F, Ovarlez G, et al. Yield stress and shear banding in granular suspensions. Phys Rev Lett, 2009, 103(17): 178301 doi: 10.1103/PhysRevLett.103.178301
|
[57] |
Madraki Y, Oakley A, Nguyen le A, et al. Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition. J Rheol, 2020, 64(2): 227 doi: 10.1122/1.5129680
|
[58] |
Richards J A, Guy B M, Blanco E, et al. The role of friction in the yielding of adhesive non-Brownian suspensions. J Rheol, 2020, 64(2): 405 doi: 10.1122/1.5132395
|
[59] |
Lobry L, Lemaire E, Blanc F, et al. Shear thinning in non-Brownian suspensions explained by variable friction between particles. J Fluid Mech, 2019, 860: 682 doi: 10.1017/jfm.2018.881
|
[60] |
Guazzelli é, Pouliquen O. Rheology of dense granular suspensions. J Fluid Mech, 2018, 852: P1 doi: 10.1017/jfm.2018.548
|
[61] |
Guy B M, Hermes M, Poon W C K. Towards a unified description of the rheology of hard-particle suspensions. Phys Rev Lett, 2015, 115(8): 088304
|
[62] |
Ovarlez G, Bertrand F, Rodts S. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol, 2006, 50(3): 259 doi: 10.1122/1.2188528
|
[63] |
Kerisit S. Water structure at hematite-water interfaces. Geochimica Cosmochimica Acta, 2011, 75(8): 2043 doi: 10.1016/j.gca.2011.01.026
|
[64] |
Murray J S, Politzer P. Hydrogen bonding: A Coulombic σ-hole interaction. J Indian I Sci, 2020, 100(1): 21 doi: 10.1007/s41745-019-00139-3
|
[65] |
Fuerstenau D W, Pradip. Zeta potentials in the flotation of oxide and silicate minerals. Adv Colloid Interface Sci, 2005, 114-115: 9 doi: 10.1016/j.cis.2004.08.006
|
[66] |
Shen Y R, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem Rev, 2006, 106(4): 1140 doi: 10.1021/cr040377d
|
[67] |
Xi Z Z. Electromotion phenomena of cement particle and study of foam concrete. Concrete, 2000(11): 48習志臻. 水泥顆粒的電動現象及泡沫混凝土的研究. 混凝土, 2000(11):48
|
[68] |
Israelachvili J N. Forces between surfaces in liquids. Adv Colloid Interface Sci, 1982, 16(1): 31 doi: 10.1016/0001-8686(82)85004-5
|
[69] |
Ye?ilba? M, Boily J F. Particle size controls on water adsorption and condensation regimes at mineral surfaces. Sci Rep, 2016, 6: 32136 doi: 10.1038/srep32136
|
[70] |
Jab?oński M. Intramolecular hydrogen bonding 2021. Molecules, 2021, 26(20): 6319 doi: 10.3390/molecules26206319
|
[71] |
Kebede G, Mitev P D, Broqvist P, et al. Hydrogen-bond relations for surface OH species. J Phys Chem C, 2018, 122(9): 4849 doi: 10.1021/acs.jpcc.7b10981
|
[72] |
Yamakata A, Osawa M. Cation-dependent restructure of the electric double layer on CO-covered Pt electrodes: Difference between hydrophilic and hydrophobic cations. J Electroanal Chem, 2017, 800: 19 doi: 10.1016/j.jelechem.2016.12.034
|
[73] |
Wong P L, Huang P, Meng Y. The effect of the electric double layer on a very thin water lubricating film. Tribol Lett, 2003, 14(3): 197 doi: 10.1023/A:1022320531293
|
[74] |
Joshi N, Romanias M N, Riffault V, et al. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory. Aeolian Res, 2017, 27: 35 doi: 10.1016/j.aeolia.2017.06.001
|
[75] |
Morag J, Dishon M, Sivan U. The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the hofmeister universality and its reversal. Langmuir, 2013, 29(21): 6317 doi: 10.1021/la400507n
|
[76] |
Johansen R T. Water-vapor adsorption on clays. Clays Clay Miner, 1957, 6(1): 249 doi: 10.1346/CCMN.1957.0060119
|
[77] |
Ruckenstein E, Manciu M. The coupling between the hydration and double layer interactions. Langmuir, 2002, 18(20): 7584 doi: 10.1021/la020435v
|
[78] |
Jiang E, Huo J, Luo Y, et al. Influence of electric field on nanoconfined proton behaviours: A molecular dynamics simulation. J Mol Liq, 2020, 319: 114113 doi: 10.1016/j.molliq.2020.114113
|
[79] |
Li H L, Xu W N, Jia F F, et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater, 2020, 27(7): 857 doi: 10.1007/s12613-020-2078-0
|
[80] |
Karaborni S, Smit B, Heidug W, et al. The swelling of clays: Molecular simulations of the hydration of montmorillonite. Science, 1996, 271(5252): 1102 doi: 10.1126/science.271.5252.1102
|
[81] |
Osipov V I. Nanofilms of adsorbed water in clay: Mechanism of formation and properties. Water Resour, 2012, 39(7): 709 doi: 10.1134/S009780781207010X
|
[82] |
Ranieri U, Giura P, Gorelli F A, et al. Dynamical crossover in hot dense water: The hydrogen bond role. J Phys Chem B, 2016, 120(34): 9051 doi: 10.1021/acs.jpcb.6b04142
|
[83] |
Berenguer R A, Lima N B, Lima V M E, et al. The role of hydrogen bonds on the mechanical properties of cement-based mortars applied to concrete surfaces. Cem Concr Compos, 2021, 115: 103848 doi: 10.1016/j.cemconcomp.2020.103848
|
[84] |
Sanders S E, Vanselous H, Petersen P B. Water at surfaces with tunable surface chemistries. J Phys Condens Matter, 2018, 30(11): 113001 doi: 10.1088/1361-648X/aaacb5
|
[85] |
Donose B C, Vakarelski I U, Higashitani K. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir, 2005, 21(5): 1834 doi: 10.1021/la047609o
|
[86] |
Gumulya M M, Horsley R R, Wilson K C, et al. A new fluid model for particles settling in a viscoplastic fluid. Chem Eng Sci, 2011, 66(4): 729 doi: 10.1016/j.ces.2010.11.037
|
[87] |
Chen Y S, Zhang W, Yu L. Hydrogen bonding slows down surface diffusion of molecular glasses. J Phys Chem B, 2016, 120(32): 8007 doi: 10.1021/acs.jpcb.6b05658
|
[88] |
Yamaguchi T. Structural origin of shear viscosity of liquid water. J Phys Chem B, 2018, 122(3): 1255 doi: 10.1021/acs.jpcb.7b10893
|
[89] |
Perticaroli S, Mostofian B, Ehlers G, et al. Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Phys Chem Chem Phys, 2017, 19(38): 25859 doi: 10.1039/C7CP04013J
|
[90] |
Koos E, Willenbacher N. Capillary forces in suspension rheology. Science, 2011, 331(6019): 897 doi: 10.1126/science.1199243
|
[91] |
Papadopoulou A, Gillissen J J J, Tiwari M K, et al. Effect of particle specific surface area on the rheology of non-Brownian silica suspensions. Materials, 2020, 13(20): 4628 doi: 10.3390/ma13204628
|
[92] |
Blanc F, D'Ambrosio E, Lobry L, et al. Universal scaling law in frictional non-Brownian suspensions. Phys Rev Fluids, 2018, 3(11): 114303 doi: 10.1103/PhysRevFluids.3.114303
|
[93] |
Katainen J, Paajanen M, Ahtola E, et al. Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci, 2006, 304(2): 524 doi: 10.1016/j.jcis.2006.09.015
|
[94] |
Xing B D, Fan W Y, Lyu Y C, et al. Influence of particle mineralogy and size on the morphological characteristics of mineral fillers. J Mater Res Technol, 2021, 15: 3995 doi: 10.1016/j.jmrt.2021.10.026
|
[95] |
Udvardi B, Kovács I J, Fancsik T, et al. Effects of particle size on the attenuated total reflection spectrum of minerals. Appl Spectrosc, 2017, 71(6): 1157 doi: 10.1177/0003702816670914
|
[96] |
Long H C, Xia J X, Cao B. Quantitative analysis on water status in coal-water slurry based on low field nuclear magnetic resonance technology. J Sediment Res, 2018, 43(3): 44龍海潮, 夏建新, 曹斌. 基于低場核磁共振技術的水煤漿水分狀態與定量分析. 泥沙研究, 2018, 43(3):44
|
[97] |
Quezada G R, Rozas R E, Toledo P G. Molecular dynamics simulations of quartz (101)–water and corundum (001)–water interfaces: Effect of surface charge and ions on cation adsorption, water orientation, and surface charge reversal. J Phys Chem C, 2017, 121(45): 25271 doi: 10.1021/acs.jpcc.7b08836
|
[98] |
Min F F, Peng C L, Song S X. Hydration layers on clay mineral surfaces in aqueous solutions: A review/warstwy uwodnione Na powierzchni minera?ów ilastych W roztworach wodnych: Przegl?d. Arch Min Sci, 2014, 59(2): 489
|
[99] |
Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 2006, 312(5778): 1375 doi: 10.1126/science.1125261
|
[100] |
Franks G V. Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction. J Colloid Interface Sci, 2002, 249(1): 44 doi: 10.1006/jcis.2002.8250
|
[101] |
Kilpatrick J I, Loh S H, Jarvis S P. Directly probing the effects of ions on hydration forces at interfaces. J Am Chem Soc, 2013, 135(7): 2628 doi: 10.1021/ja310255s
|
[102] |
DeWalt-Kerian E L, Kim S, Azam M S, et al. pH-dependent inversion of hofmeister trends in the water structure of the electrical double layer. J Phys Chem Lett, 2017, 8(13): 2855 doi: 10.1021/acs.jpclett.7b01005
|
[103] |
Oh M I, Gupta M, Oh C I, et al. Understanding the effect of nanoconfinement on the structure of water hydrogen bond networks. Phys Chem Chem Phys, 2019, 21(47): 26237 doi: 10.1039/C9CP05014K
|
[104] |
Rehl B, Gibbs J M. Role of ions on the surface-bound water structure at the silica/water interface: Identifying the spectral signature of stability. J Phys Chem Lett, 2021, 12(11): 2854 doi: 10.1021/acs.jpclett.0c03565
|
[105] |
Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
|
[106] |
Churayev N V, Sobolev V D, Zorin Z M. Measurement of viscosity of liquids in quartz capillaries. Spec Discuss Faraday Soc, 1970, 1: 213 doi: 10.1039/sd9700100213
|
[107] |
Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A Physicochem Eng Aspects, 2000, 173(1-3): 1
|
[108] |
Raghavan S R, Walls H J, Khan S A. Rheology of silica dispersions in organic liquids: ? new evidence for solvation forces dictated by hydrogen bonding. Langmuir, 2000, 16(21): 7920 doi: 10.1021/la991548q
|
[109] |
Arshad M, Maali A, Claudet C, et al. An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions. Soft Matter, 2021, 17(25): 6088 doi: 10.1039/D1SM00254F
|
[110] |
Miller J D, Wang X M, Jin J Q, et al. Interfacial water structure and the wetting of mineral surfaces. Int J Miner Process, 2016, 156: 62 doi: 10.1016/j.minpro.2016.02.004
|
[111] |
Leighton D, Acrivos A. The shear-induced migration of particles in concentrated suspensions. J Fluid Mech, 1987, 181: 415 doi: 10.1017/S0022112087002155
|
[112] |
Morris J F. A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta, 2009, 48(8): 909 doi: 10.1007/s00397-009-0352-1
|
[113] |
Tanner R I, Dai S C. Particle roughness and rheology in noncolloidal suspensions. J Rheol, 2016, 60(4): 809 doi: 10.1122/1.4954643
|
[114] |
Wilms P, Hinrichs J, Kohlus R. Macroscopic rheology of non-Brownian suspensions at high shear rates: The influence of solid volume fraction and non-Newtonian behaviour of the liquid phase. Rheol Acta, 2022, 61(2): 123 doi: 10.1007/s00397-021-01320-1
|
[115] |
Blanc F, Peters F, Lemaire E. Local transient rheological behavior of concentrated suspensions. J Rheol, 2011, 55(4): 835 doi: 10.1122/1.3582848
|
[116] |
Olanrewaju K O, Bae T H, Nair S, et al. The rheology of suspensions of porous zeolite particles in polymer solutions. Rheol Acta, 2014, 53(2): 133 doi: 10.1007/s00397-013-0746-y
|