<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于腦電多視圖混合神經網絡的時空半監督睡眠分期

劉虹梅 彭才靜 韓芳 張遠

劉虹梅, 彭才靜, 韓芳, 張遠. 基于腦電多視圖混合神經網絡的時空半監督睡眠分期[J]. 工程科學學報, 2023, 45(5): 797-806. doi: 10.13374/j.issn2095-9389.2022.03.22.005
引用本文: 劉虹梅, 彭才靜, 韓芳, 張遠. 基于腦電多視圖混合神經網絡的時空半監督睡眠分期[J]. 工程科學學報, 2023, 45(5): 797-806. doi: 10.13374/j.issn2095-9389.2022.03.22.005
LIU Hong-mei, PENG Cai-jing, HAN Fang, ZHANG Yuan. Multi-view hybrid neural network for spatiotemporal semi-supervised sleep staging[J]. Chinese Journal of Engineering, 2023, 45(5): 797-806. doi: 10.13374/j.issn2095-9389.2022.03.22.005
Citation: LIU Hong-mei, PENG Cai-jing, HAN Fang, ZHANG Yuan. Multi-view hybrid neural network for spatiotemporal semi-supervised sleep staging[J]. Chinese Journal of Engineering, 2023, 45(5): 797-806. doi: 10.13374/j.issn2095-9389.2022.03.22.005

基于腦電多視圖混合神經網絡的時空半監督睡眠分期

doi: 10.13374/j.issn2095-9389.2022.03.22.005
基金項目: 國家自然科學基金資助項目(62172340);重慶市自然科學基金資助項目(cstc2021jcyj-msx mX0041);中央高校基本科研業務費專項(SWU020008);重慶市中青年醫學高端人才工作室專項(ZQNYXGDRCGZS2021002)
詳細信息
    通訊作者:

    E-mail: yuanzhang@swu.edu.cn

  • 中圖分類號: TG142.71

Multi-view hybrid neural network for spatiotemporal semi-supervised sleep staging

More Information
  • 摘要: 睡眠分期是評價睡眠質量的必要基礎,現階段的工作大部分采用全監督學習和單一維度視圖信息進行,這不僅需要技師進行大量的睡眠數據標注,還可能因特征提取不充分而導致分期準確率受限的問題。利用半監督學習策略,實現對腦電無標注數據的學習。提出一種多視圖混合神經網絡,首先用多通道視圖時頻域機制分別提取時域信號特征和空域信號特征,實現多視圖特征提取;再通過注意力機制加強對顯著性特征的提取;最后將上述混合特征融合并分類。在三個公開數據集和一個私有數據集中與全監督學習進行了對比評估,半監督學習取得平均準確率為81.0%,卡帕值為73.2%。結果表明,本文模型可以與全監督學習的睡眠分期模型相媲美,同時顯著減少技師標注數據的工作量。

     

  • 圖  1  不同數據集中睡眠類別分布

    Figure  1.  Distribution of sleep categories in different datasets

    圖  2  多視圖混合神經網絡架構. (a) 時空數據; (b) 多通道視圖時頻域特征提取; (c) 注意力機制; (d) 特征融合

    Figure  2.  Multi-view hybrid neural network architecture: (a) spatiotemporal data; (b) time-frequency domain feature extraction from multichannel views; (c) attention mechanism; (d) feature fusion

    圖  3  半監督學習示意圖

    Figure  3.  Schematic diagram of semi-supervised learning

    圖  4  多視圖時頻域特征提取機制

    Figure  4.  Multi-view time-frequency domain feature extraction mechanism

    圖  5  注意力特征提取機制

    Figure  5.  Attention feature extraction mechanism

    圖  6  多視圖混合神經網絡混淆矩陣. (a) S: Sleep?EDF混淆矩陣; (b) S: DOD?H混淆矩陣; (c) S: DOD?O混淆矩陣; (d) S: 私有數據集混淆矩陣; (e) SS: Sleep?EDF混淆矩陣; (f) SS: DOD?H混淆矩陣; (g) SS: DOD?O混淆矩陣; (h) SS: 私有數據集混淆矩陣

    Figure  6.  Confusion matrices of the multi-view hybrid neural network: (a) S: confusion matrix of supervised learning on Sleep?EDF datasets; (b) S: confusion matrix of supervised learning on DOD?H datasets; (c) S: confusion matrix of supervised learning on DOD?O datasets; (d) S: confusion matrix of supervised learning on private datasets; (e) SS: confusion matrix of semi-supervised learning on Sleep?EDF datasets; (f) SS: confusion matrix of semi-supervised learning on DOD?H datasets; (g) SS: confusion matrix of semi-supervised learning on DOD?O datasets; (h) SS: confusion matrix of semi-supervised learning on private datasets

    表  1  睡眠數據集情況

    Table  1.   Summary of the sleep databases

    DatasetsSizeSampling rateEEG channelScoreEpochTotal
    WN1N2N3REM
    Sleep?EDF40100Fpz?CzR&K44233653198516415834942691
    DOD?H25250F3_F4AASM30371505118793514472724665
    DOD?O55250F3_F4AASM106602898266505683830654197
    Private9128F3-M2AASM10429563938155714578950
    下載: 導出CSV

    表  2  Sleep?EDF數據集實驗結果

    Table  2.   Experimental results of the Sleep?EDF dataset

    SystemOverall MetricsClass-wise F1/%
    ACC/%KF1/%Sens./%Spec./%WN1N2N3REM
    S:Ours83.675.379.476.687.9 86.545.388.383.281.2
    SS:Ours81.671.574.874.786.384.335.387.280.480.3
    S:XSleepNet283.977.178.778.695.5
    S:XSleepNet182.275.076.476.895.2
    S:SleepStageNet67.859.168.5
    S:SeqSleepNet82.274.674.173.995.089.544.384.275.377.5
    S:DeepSleepNet79.872.073.188.137.082.777.380.3
    S:HATSN80.175.279.9
    SS:SleepPriorCL76.465.5
    SS:SleepDPC76.462.8
    下載: 導出CSV

    表  3  DOD?H數據集實驗結果

    Table  3.   Experimental results of the DOD?H dataset

    SystemOverall MetricsClass-wise F1/%
    ACC/%KF1/%Sens./%Spec./%WN1N2N3REM
    S:Ours82.473.576.279.380.275.150.287.387.272.5
    SS:Ours79.267.074.475.286.977.348.084.787.378.4
    S:SeqSleepNet82.274.674.173.995.089.544.384.275.377.5
    S:DeepSleepNet79.868.279.878.637.082.777.380.3
    S:Tsinalis et al.(CNN)83.683.583.582.638.887.662.074.4
    S:Mixed NN82.172.581.984.849.785.661.871.8
    下載: 導出CSV

    表  4  DOD?O數據集實驗結果

    Table  4.   Experimental results of the DOD?O dataset

    SystemOverall MetricsClass-wise F1/%
    ACC/%KF1/%Sens./%Spec./%WN1N2N3REM
    S:Ours82.473.576.279.380.275.150.287.387.272.5
    SS:Ours79.267.074.475.286.977.348.084.787.378.4
    S:SeqSleepNet82.274.674.173.995.089.544.384.275.377.5
    S:DeepSleepNet79.868.279.878.637.082.777.380.3
    S:Tsinalis et al.(CNN)83.683.583.582.638.887.662.074.4
    S:Mixed NN82.172.581.984.849.785.661.871.8
    下載: 導出CSV

    表  5  私有數據集實驗結果

    Table  5.   Experimental results of the private dataset

    SystemOverall MetricsClass-wise F1/%
    ACC/%KF1/%Sens. /%Spec. /%WN1N2N3REM
    S:Ours77.270.376.375.785.485.458.078.388.970.8
    SS:Ours75.466.374.272.983.081.454.876.388.267.8
    S:resnet-5077.570.477.376.478.686.358.576.788.269.2
    S:resnext-5078.171.776.876.777.186.258.878.588.774.5
    SS:resnet-5073.265.172.772.973.584.254.576.690.163.9
    SS:resnext-5071.762.169.669.371.781.540.373.886.467.7
    下載: 導出CSV

    表  6  私有數據集消融實驗結果

    Table  6.   Ablation experimental results of the private dataset

    SystemOverall MetricsClass-wise F1/%
    ACC/%KF1/%Sens. /%Spec. /%WN1N2N3REM
    S:Ours without attention72.363.571.771.971.783.253.671.484.867.7
    SS: Ours without attention70.560.868.969.768.980.348.970.285.363.5
    S:Ours77.270.376.375.785.485.458.078.388.970.8
    SS:Ours75.466.374.272.983.081.444.876.388.267.8
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Maquet P. The role of sleep in learning and memory. Science, 2001, 294(5544): 1048 doi: 10.1126/science.1062856
    [2] Berry R B, Brooks R, Gamaldo C, et al. AASM scoring manual updates for 2017 (version 2.4). J Clin Sleep Med, 2017, 13(5): 665 doi: 10.5664/jcsm.6576
    [3] Zhang Y. Sensing, computing and intervention for sleep health. Chin Sci Bull, 2022, 67(1): 27

    張遠. 面向睡眠健康的感知、計算和干預. 科學通報, 2022, 67(1):27
    [4] Phan H, Andreotti F, Cooray N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Trans Biomed Eng, 2019, 66(5): 1285 doi: 10.1109/TBME.2018.2872652
    [5] Chambon S, Galtier M N, Arnal P J, et al. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(4): 758 doi: 10.1109/TNSRE.2018.2813138
    [6] Perslev M, Jensen M H, Darkner S, et al. U-time: A fully convolutional network for time series segmentation applied to sleep staging // Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, 2019: 1
    [7] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // IEEE Conference on Computer Vision and Pattern Recognition. New York, 2016: 770
    [8] Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J/OL]. arXiv preprint (2020-04-19) [2022-03-22].https://arxiv.org/abs/2004.08955
    [9] Phan H, Andreotti F, Cooray N, et al. Automatic sleep stage classification using single-channel EEG: Learning sequential features with attention-based recurrent neural networks // 40th Annual International Conference IEEE Engineering in Medicine and Biology Society, Honolulu, 2018: 1452
    [10] Phan H, Andreotti F, Cooray N, et al. SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to- sequence automatic sleep staging. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(3): 400 doi: 10.1109/TNSRE.2019.2896659
    [11] Phan H, Chén O Y, Koch P, et al. Towards more accurate automatic sleep staging via deep transfer learning. IEEE Trans Biomed Eng, 2021, 68(6): 1787 doi: 10.1109/TBME.2020.3020381
    [12] Supratak A, Dong H, Wu C, et al. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Sys Rehabil Eng, 2017, 25(11): 1998 doi: 10.1109/TNSRE.2017.2721116
    [13] Guillot A, Thorey V. Robust, et al. SleepNet: Transfer learning for automated sleep staging at scale. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1441
    [14] Chen K, Zhang C, Ma J, et al. Sleep staging from single-channel EEG with multi-scale feature and contextual information. Sleep Breath, 2019, 23(4): 1159 doi: 10.1007/s11325-019-01789-4
    [15] Jia Z Y, Lin Y F, Wang J, et al. SalientSleepNet: Multimodal salient wave detection network for sleep staging // Thirtieth International Joint Conference on Artificial Intelligence. Montreal, 2021: 2614
    [16] Jin Z, Jia K B, Yuan Y. A hybrid attention temporal sequential network for sleep stage classification. J Biomed Eng, 2021, 38(2): 241 doi: 10.7507/1001-5515.202008006

    金崢, 賈克斌, 袁野. 基于混合注意力時序網絡的睡眠分期算法研究. 生物醫學工程學雜志, 2021, 38(2):241 doi: 10.7507/1001-5515.202008006
    [17] Phan H, Chén O Y, Tran M C, et al. XSleepNet: Multi-view sequential model for automatic sleep staging. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9): 5903
    [18] Fiorillo L, Favaro P, Faraci F D. DeepSleepNet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 2076 doi: 10.1109/TNSRE.2021.3117970
    [19] Dong H, Supratak A, Pan W, et al. Mixed neural network approach for temporal sleep stage classification. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(2): 324 doi: 10.1109/TNSRE.2017.2733220
    [20] Tsinalis O, Matthews P M, Guo Y K, et al. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[J/OL]. arXiv preprint (2016-10-05) [2022-03-22]. https://arxiv.org/abs/1610.01683
    [21] Zhang H J, Wang J, Xiao Q F, et al. SleepPriorCL: Contrastive representation learning with prior knowledge-based positive mining and adaptive temperature for sleep staging[J/OL]. arXiv preprint (2021-10-15) [2022-3-22].https://arxiv.org/abs/2110.09966
    [22] Xiao Q, Wang J, Ye J, et al. Self-supervised learning for sleep stage classification with predictive and discriminative contrastive coding // 2021 IEEE International Conference on Acoustics Speech and Signal Processing. Toronto, 2021: 1290
    [23] Kemp B, Zwinderman A H, Tuk B, et al. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng, 2000, 47(9): 1185 doi: 10.1109/10.867928
    [24] Guillot A, Sauvet F, During E H, et al. Dreem open datasets: Multi-scored sleep datasets to compare human and automated sleep staging. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(9): 1955 doi: 10.1109/TNSRE.2020.3011181
    [25] Sohn K, Berthelot D, Li C, et al. FixMatch: Simplifying semi-supervised learning with consistency and confidence. Adv Neural inf Process Syst, 2020, 33: 596
    [26] Korkalainen H, Aakko J, Nikkonen S, et al. Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea. IEEE J Biomed Health Inform, 2020, 24(7): 2073
    [27] Cui Y, Jia M L, Lin T Y, et al. Class-balanced loss based on effective number of samples // 2019 IEEE/CVF Conf Comput Vis Pattern Recognit. Long Beach, 2019: 9260
    [28] Zhang C H, Yu W W, Li Y M, et al. CMS2-net: Semi-supervised sleep staging for diverse obstructive sleep apnea severity. IEEE J Biomed Health Inform, 2022, 26(7): 3447 doi: 10.1109/JBHI.2022.3156585
    [29] Wu Z R, Xiong Y J, Yu S X, et al. Unsupervised feature learning via non-parametric instance discrimination // 2018 IEEE/CVF Conf Comput Vis Pattern Recognit. Salt Lake City, 2018: 3733
  • 加載中
圖(6) / 表(6)
計量
  • 文章訪問數:  626
  • HTML全文瀏覽量:  273
  • PDF下載量:  132
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-22
  • 網絡出版日期:  2022-08-10
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回