Preparation of 2,6-diaminoanthraquinone/reduced graphene oxide-based composites as cathode materials for organic lithium batteries
-
摘要: 采用水熱合成法和冷凍干燥技術制備了2,6-二氨基蒽醌(2,6-AAQ)/rGO復合材料,通過氨基(—NH2)與羧基(—COOH)形成肽鍵(—CO—NH—)共價鍵,使其在電解液中的溶解問題從本質上得到了解決。SEM和EDS Mapping表明,2,6-AAQ/rGO-3復合材料中的2,6-AAQ呈現出高度的棒狀結構,并且被石墨烯包裹得更緊密。這種獨特的結構提高了2,6-AAQ在鋰化過程中的電子導電性,可有效減少2,6-AAQ的聚集,利于電解質的浸潤。XPS、XRD、FTIR和Raman結果表明,2,6-AAQ和rGO之間發生了水熱輔助化學鍵合,形成了rGO包裹2,6-AAQ的結構。此外,非原位FTIR表征結果驗證了2,6-AAQ/rGO-3具有良好的儲鋰性能,羰基(C=O)為反應位點。同時,紫外-可見光譜測試清楚表明,與2,6-AAQ相比,通過肽鍵連接的2,6-AAQ/rGO-3的溶解度顯著降低,表明電化學性能大大提高。其中2,6-AAQ/rGO-3作為鋰離子電池正極時,在100 mA·g?1電流下,首圈放電容量高達212.2 mA·h·g?1, 在500 mA·g?1電流下循環100周后放電容量仍為184 mA·h·g?1,展現出了優異的循環穩定性和高倍率性能。2,6-AAQ/rGO出色的電化學性能得益于石墨烯的碳骨架對2,6-AAQ的錨定,該結構不僅可以防止2,6-AAQ溶解,還可以為其提供導電網絡,進一步提高電子傳導速率。Abstract: Organic carbonyl compounds have received great attention as electrode materials because of their fast reduction–oxidation kinetics, environment friendliness, and high theoretical capacity. Especially, the small molecular quinones, such as anthraquinone (AQ), can possess high theoretical (257 mA·h·g?1) and a discharge–charge voltage of 2.2–2.3 V, implying that it has the potential of up to 565 W·h·kg?1 energy density. However, it suffers from high solubility in organic electrolytes and low conductivity, leading to rapid capacity fading and inferior rate performance. Herein, we report 2,6-diaminoanthraquinone (2,6-AAQ) uniform self-assembly into a three-dimensional (3D) porous structure graphene foam, which was successfully fabricated through a gentle hydrothermal synthesis reaction with simultaneous in situ condensation of 2,6-AAQ on the reduced graphene surface, as a high-performance cathode for Lithium-organic batteries. Benefiting from the formation of a covalent bond (—CO—NH—) between the amino group (—NH2) of 2,6-AAQ and the carboxyl group (—COOH) of oxidized graphene, the molecular structure of AQ is uniformly anchored into a 3D graphene foam architecture. The strategy simultaneously solved the high dissolution and low conductivity of AQ. The as-obtained hybrid composites were characterized by various techniques. SEM and EDS mapping images demonstrated that the 2,6-AAQ within the hybrid architecture was not only uniformly anchored on the surface but also tightly wrapped in the interior of graphene foam. This unique architectural structure can improve the electronic conductivity of 2,6-AAQ in the lithiation process and effectively inhibit the dissolution of 2,6-AAQ in electrolytes, which is beneficial to hoist the electrochemical performance of the composite materials. XPS, XRD, FTIR, and Raman results indicated that hydrothermally assisted chemical bonding occurred between 2,6-AAQ and rGO, significantly facilitating the mass electron transformation and ion diffusion from graphene substrate to 2,6-AAQ for the fast reduction–oxidation reaction. Combined with the above results, UV–Vis spectroscopy tests also further disclosed that the 2,6-AAQ and rGO linked by covalent bonds significantly decrease solubility compared with 2,6-AAQ, indicating the greatly increased cycling stability of the hybrid material. Additionally, ex situ FTIR characterization results verified that the composite cathode material with two carbonyls (C=O) active sites has good lithium storage performance. By optimizing the 2,6-AAQ concentration, the 25% 2,6-AAQ in the as-prepared composite was used as the high-performance cathode for the lithium-ion battery. The composite material can display a high initial discharge capacity of 212.2 mA·h·g?1 at 100 mA·g?1 (based on the 2,6-AAQ mass) and a reversible capacity of 184 mA·h·g?1 with a capacity retention of 86.7% after 100 cycles at 500 mA·g?1 current density. This excellent electrochemical performance is attributed to fast lithium-ion diffusion and electric transport between the 2,6-AAQ and the 3D porous structure hybrid architecture, which also proposes a facile strategy for the immobilization of the small molecular quinones to construct advanced organic lithium batteries.
-
Key words:
- anthraquinone /
- reduced graphene oxide /
- composite material /
- lithium-ion batteries /
- cathode materials
-
圖 2 (a) 2,6-AAQ/rGO-1掃描電鏡圖; (b) 2,6-AAQ/rGO-2 掃描電鏡圖; (c) 2,6-AAQ/rGO-3掃描電鏡圖(插圖:2,6-AAQ/rGO-3復合材料氣凝膠的數碼照片); (d) 2,6-AAQ/rGO-3復合材料的EDS圖; (e) 2,6-AAQ/rGO-3透射電鏡圖; (f~h) 2,6-AAQ/rGO-3中C、N和O元素的mapping圖
Figure 2. (a) SEM images of 2,6-AAQ/rGO-1; (b) SEM images of 2,6-AAQ/rGO-2; (c) SEM images of 2,6-AAQ/rGO-3(inset: digital photos of 2,6-AAQ/rGO-3 composite aerogel); (d) EDS diagram of 2,6-AAQ/rGO-3 composite; (e) TEM images of 2,6-AAQ/rGO-3; (f-h) C, N, and O elemental mapping of 2,6-AAQ/rGO-3
圖 6 (a) 原始電解液的照片,以及分別浸入2 mL電解液中的2,6-AAQ和2,6-AAQ/rGO-3 電極片7 d后的照片;(b) 原始電解液和浸泡7 d后溶液的UV-Vis光譜(電解液由1 mol·L?1雙三氟甲基磺酰亞胺鋰(LITFSI)溶解在體積比為1∶1的乙二醇二甲醚(DME)與1,3-二氧戊環(DOL)溶劑組成)
Figure 6. (a) Photographs of the pristine electrolyte and 2,6-AAQ and 2,6-AAQ/rGO-3 electrodes separately immersed in 2 mL electrolyte after 7 days; (b) UV/Vis spectra of the pristine electrolyte and after 7 days of soaking (the electrolyte consisted of 1 mol·L?1 lithium ditrifluoromethyl sulfonimide (LITFSI) dissolved in a 1∶1 volume ratio of ethylene glycol dimethyl ether (DME) and 1, 3-dioxentyl ring (DOL) solvent)
圖 7 (a) 2,6-AAQ/rGO-1、2,6-AAQ/rGO-2和2,6-AAQ/rGO-3在100 mA·g?1電流下的充放電曲線;(b) 不同電極在不同電流密度下的倍率性能曲線;(c) 循環前原始2,6-AAQ、rGO電極與不同比例2,6-AAQ/rGO電極的電化學阻抗譜;(d) 2,6-AAQ/rGO-3在20~500 mA·g?1的各種電流密度下的放電/充電曲線;(e) 2,6-AAQ/rGO-3電極在1.2~3.8 V電壓范圍內掃描速率為0.1 mV·s?1的CV曲線;(f) 500 mA·g?1下測量的不同電極的循環性能
Figure 7. (a) Charge–discharge curves of 2,6-AAQ/rGO-1, 2,6-AAQ/rGO-2 and 2,6-AAQ/rGO-3 at 100 mA·g?1 current density; (b) rate performance of different electrodes under various current rates; (c) EIS spectra of pristine 2,6-AAQ, rGO and 2,6-AAQ/rGO electrodes before cycle; (d) discharge/charge profiles of 2,6-AAQ/rGO-3 at various rates from 20 to 500 mA·g?1; (e) CV curves of the 2,6-AAQ/rGO-3 electrode at a scan rate of 0.1 mV·s?1 in the voltage range of 1.2–3.8 V; (f) cycling performance of different electrodes measured at 500 mA·g?1
www.77susu.com -
參考文獻
[1] Pomerantseva E, Bonaccorso F, Feng X L, et al. Energy storage: The future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285 doi: 10.1126/science.aan8285 [2] Kebede A A, Kalogiannis T, van Mierlo J, et al. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev, 2022, 159: 112213 doi: 10.1016/j.rser.2022.112213 [3] Han X, Zhang C K, Wu H L, et al. Working mechanism and key materials of the lithium ion batteries. Met Funct Mater, 2021, 28(2): 37 doi: 10.13228/j.boyuan.issn1005-8192.20210001韓嘯, 張成錕, 吳華龍, 等. 鋰離子電池的工作原理與關鍵材料. 金屬功能材料, 2021, 28(2):37 doi: 10.13228/j.boyuan.issn1005-8192.20210001 [4] Li Z M, Li B, Feng D, et al. Research progress of cathode materials for lithium-ion battery. Acta Mater Compos Sin, 2022, 39(2): 513李仲明, 李斌, 馮東, 等. 鋰離子電池正極材料研究進展. 復合材料學報, 2022, 39(2):513 [5] Yang Y, He Y P, Zhang P P, et al. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries. Chin J Eng, 2022, 44(3): 367 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203006楊溢, 何亞鵬, 張盼盼, 等. 鋰離子電池富鋰正極材料的包覆改性研究進展. 工程科學學報, 2022, 44(3):367 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203006 [6] Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun, 2020, 11: 1550 doi: 10.1038/s41467-020-15355-0 [7] Bu X H, Shustova N B, Sargent E H. Editorial for the special issue: Dimensionality of emerging materials and energy. Adv Energy Mater, 2022, 12(4): 2103816 doi: 10.1002/aenm.202103816 [8] Sethurajan M, Gaydardzhiev S. Bioprocessing of spent lithium ion batteries for critical metals recovery - A review. Resour Conserv Recycl, 2021, 165: 105225 doi: 10.1016/j.resconrec.2020.105225 [9] Lyu Y C, Wu X, Wang K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater, 2020, 11(2): 2000982 [10] Deng Y P, Wu Z G, Liang R L, et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv Funct Mater, 2019, 29(19): 1808522 doi: 10.1002/adfm.201808522 [11] Liu D M, Fan X J, Li Z H, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy, 2019, 58: 786 doi: 10.1016/j.nanoen.2019.01.080 [12] Zhao S Q, Yan K, Zhang J Q, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew Chem Int Ed Engl, 2021, 60(5): 2208 doi: 10.1002/anie.202000262 [13] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem, 2020, 4(3): 127 doi: 10.1038/s41570-020-0160-9 [14] Lee S C, Hong J, Kang K. Redox-active organic compounds for future sustainable energy storage system. Adv Energy Mater, 2020, 10(30): 2001445 doi: 10.1002/aenm.202001445 [15] Gong Z S, Zheng S L, Zhang J, et al. Cross-linked PVA/HNT composite separator enables stable lithium-organic batteries under elevated temperature. ACS Appl Mater Interfaces, 2022, 14(9): 11474 doi: 10.1021/acsami.1c23962 [16] Shea J J, Luo C. Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces, 2020, 12(5): 5361 doi: 10.1021/acsami.9b20384 [17] Chen Y, Wang C L. Designing high performance organic batteries. Acc Chem Res, 2020, 53(11): 2636 doi: 10.1021/acs.accounts.0c00465 [18] Wu Y C, Chen Y, Tang M, et al. A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: Reconsidering its structures. Chem Commun, 2019, 55(73): 10856 doi: 10.1039/C9CC05679C [19] Sun H M, Yan B, Huang W W, et al. Application of Calix[4]quinone in secondary batteries. Energy Storage Sci Technol, 2019, 8(4): 702 doi: 10.12028/j.issn.2095-4239.2019.0023孫會民, 閆冰, 黃葦葦, 等. 醌類電極材料Calix[4]quinone在二次電池中的應用. 儲能科學與技術, 2019, 8(4):702 doi: 10.12028/j.issn.2095-4239.2019.0023 [20] Yan L J, Zhao C X, Sha Y, et al. Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy, 2020, 73: 104766 doi: 10.1016/j.nanoen.2020.104766 [21] Luo Z Q, Liu L J, Zhao Q, et al. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew Chem Int Ed Engl, 2017, 56(41): 12561 doi: 10.1002/anie.201706604 [22] Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater, 2017, 16(8): 841 doi: 10.1038/nmat4919 [23] Gulbahar D, Lu Y, Zhao Q, et al. Quinones as electrode materials for rechargeable lithium batteries. Acta Phys Chimica Sin, 2016, 32(7): 1593 doi: 10.3866/PKU.WHXB201605231古麗巴哈爾?達吾提, 盧勇, 趙慶, 等. 可充鋰電池醌類化合物電極材料. 物理化學學報, 2016, 32(7):1593 doi: 10.3866/PKU.WHXB201605231 [24] Zhu L M, Liu J B, Liu Z Q, et al. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem, 2019, 6(3): 787 doi: 10.1002/celc.201801252 [25] Zhao Q, Zhu Z, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater, 2017, 29(48): 1607007 doi: 10.1002/adma.201607007 [26] Zhu T X, Liu D Y, Shi L, et al. Nitrogen-doped hierarchical porous carbon-promoted adsorption of anthraquinone for long-life organic batteries. ACS Appl Mater Interfaces, 2020, 12(31): 34910 doi: 10.1021/acsami.0c08214 [27] Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li-ion storage capacity. ChemElectroChem, 2021, 8(9): 1678 doi: 10.1002/celc.202100259 [28] Wang Y Q, Lan H H, Hou Q, et al. Progress in application of anthraquinone organic electrode materials in new secondary batteries. Chin J Rare Met, 2022, 46(2): 238 doi: 10.13373/j.cnki.cjrm.XY20060042王玉琪, 藍海航, 侯瓊, 等. 蒽醌類有機電極材料在新型二次電池中的應用研究進展. 稀有金屬, 2022, 46(2):238 doi: 10.13373/j.cnki.cjrm.XY20060042 [29] Zhang K, Guo C Y, Zhao Q, et al. High-performance organic lithium batteries with an ether-based electrolyte and 9, 10-anthraquinone (AQ)/CMK-3 cathode. Adv Sci, 2015, 2(5): 1500018 doi: 10.1002/advs.201500018 [30] Yao M, Sano H, Ando H, et al. Anthraquinone-based oligomer as a long cycle-life organic electrode material for use in rechargeable batteries. ChemPhysChem, 2019, 20(7): 967 doi: 10.1002/cphc.201900012 [31] Li J H, Cai Y F, Wu H M, et al. Polymers in lithium-ion and lithium metal batteries. Adv Energy Mater, 2021, 11(15): 2003239 doi: 10.1002/aenm.202003239 [32] Huang H B, Shi H D, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater, 2020, 30(41): 1909035 doi: 10.1002/adfm.201909035 [33] Zhou T Z, Cheng Q F. Chemical strategies for making strong graphene materials. Angew Chem Int Ed Engl, 2021, 60(34): 18397 doi: 10.1002/anie.202102761 [34] Olabi A G, Abdelkareem M A, Wilberforce T, et al. Application of graphene in energy storage device - A review. Renew Sustain Energy Rev, 2021, 135: 110026 doi: 10.1016/j.rser.2020.110026 [35] Luo Z Q, Liu L J, Ning J X, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed Engl, 2018, 57(30): 9443 doi: 10.1002/anie.201805540 [36] Weng C J, Shi Y X, He D F, et al. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity. CIESC J, 2018, 69(7): 3263翁程杰, 史葉勛, 何大方, 等. 水熱法制備還原氧化石墨烯及其導電性調控. 化工學報, 2018, 69(7):3263 [37] Jankovsky O, Marvan P, Nová?ek M, et al. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl Mater Today, 2016, 4: 45 doi: 10.1016/j.apmt.2016.06.001 [38] Wang H W, Zhang Y, Ang H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater, 2016, 26(18): 3082 doi: 10.1002/adfm.201505240 [39] Tang M, Zhu S L, Liu Z T, et al. Tailoring π-conjugated systems: From π-π stacking to high-rate-performance organic cathodes. Chem, 2018, 4(11): 2600 doi: 10.1016/j.chempr.2018.08.014 [40] Zhao L, Wang A B, Wang W K, et al. Preparation and electrochemical performance of aminoanthraquinone derivative as cathode materials in rechargeable lithium batteries. Acta Phys-chim Sin, 2012, 28(3): 596 doi: 10.3866/PKU.WHXB201112261趙磊, 王安邦, 王維坤, 等. 氨基蒽醌衍生物的合成及其用作鋰電池正極材料的電化學性能. 物理化學學報, 2012, 28(3):596 doi: 10.3866/PKU.WHXB201112261 [41] Luo Z Q, Zheng S L, Zhao S, et al. High energy density aqueous zinc-benzoquinone battery enabled by carbon cloth with multiple anchoring effects. J Mater Chem A, 2021, 9(10): 6138 [42] Hu B L H, Wu F Y, Lin C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun, 2013, 4: 1687 doi: 10.1038/ncomms2705 -