<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

2,6-二氨基蒽醌/還原氧化石墨烯復合材料的制備及在鋰有機電池的應用

張瑾 黃莉雅 蔡鋒石 羅志強 袁志好

張瑾, 黃莉雅, 蔡鋒石, 羅志強, 袁志好. 2,6-二氨基蒽醌/還原氧化石墨烯復合材料的制備及在鋰有機電池的應用[J]. 工程科學學報, 2023, 45(7): 1165-1174. doi: 10.13374/j.issn2095-9389.2022.03.22.003
引用本文: 張瑾, 黃莉雅, 蔡鋒石, 羅志強, 袁志好. 2,6-二氨基蒽醌/還原氧化石墨烯復合材料的制備及在鋰有機電池的應用[J]. 工程科學學報, 2023, 45(7): 1165-1174. doi: 10.13374/j.issn2095-9389.2022.03.22.003
ZHANG Jin, HUANG Li-ya, CAI Feng-shi, LUO Zhi-qiang, YUAN Zhi-hao. Preparation of 2,6-diaminoanthraquinone/reduced graphene oxide-based composites as cathode materials for organic lithium batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1165-1174. doi: 10.13374/j.issn2095-9389.2022.03.22.003
Citation: ZHANG Jin, HUANG Li-ya, CAI Feng-shi, LUO Zhi-qiang, YUAN Zhi-hao. Preparation of 2,6-diaminoanthraquinone/reduced graphene oxide-based composites as cathode materials for organic lithium batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1165-1174. doi: 10.13374/j.issn2095-9389.2022.03.22.003

2,6-二氨基蒽醌/還原氧化石墨烯復合材料的制備及在鋰有機電池的應用

doi: 10.13374/j.issn2095-9389.2022.03.22.003
基金項目: 國家自然科學基金資助項目(21905205);天津自然科學基金資助項目(19JCQNJC05900)
詳細信息
    通訊作者:

    E-mail: zhqluo@email.tjut.edu.cn

  • 中圖分類號: O625.6

Preparation of 2,6-diaminoanthraquinone/reduced graphene oxide-based composites as cathode materials for organic lithium batteries

More Information
  • 摘要: 采用水熱合成法和冷凍干燥技術制備了2,6-二氨基蒽醌(2,6-AAQ)/rGO復合材料,通過氨基(—NH2)與羧基(—COOH)形成肽鍵(—CO—NH—)共價鍵,使其在電解液中的溶解問題從本質上得到了解決。SEM和EDS Mapping表明,2,6-AAQ/rGO-3復合材料中的2,6-AAQ呈現出高度的棒狀結構,并且被石墨烯包裹得更緊密。這種獨特的結構提高了2,6-AAQ在鋰化過程中的電子導電性,可有效減少2,6-AAQ的聚集,利于電解質的浸潤。XPS、XRD、FTIR和Raman結果表明,2,6-AAQ和rGO之間發生了水熱輔助化學鍵合,形成了rGO包裹2,6-AAQ的結構。此外,非原位FTIR表征結果驗證了2,6-AAQ/rGO-3具有良好的儲鋰性能,羰基(C=O)為反應位點。同時,紫外-可見光譜測試清楚表明,與2,6-AAQ相比,通過肽鍵連接的2,6-AAQ/rGO-3的溶解度顯著降低,表明電化學性能大大提高。其中2,6-AAQ/rGO-3作為鋰離子電池正極時,在100 mA·g?1電流下,首圈放電容量高達212.2 mA·h·g?1, 在500 mA·g?1電流下循環100周后放電容量仍為184 mA·h·g?1,展現出了優異的循環穩定性和高倍率性能。2,6-AAQ/rGO出色的電化學性能得益于石墨烯的碳骨架對2,6-AAQ的錨定,該結構不僅可以防止2,6-AAQ溶解,還可以為其提供導電網絡,進一步提高電子傳導速率。

     

  • 圖  1  2,6-AAQ/rGO復合材料的制備過程示意圖

    Figure  1.  Schematic diagram of the preparation process of 2,6-AAQ/rGO composites

    圖  2  (a) 2,6-AAQ/rGO-1掃描電鏡圖; (b) 2,6-AAQ/rGO-2 掃描電鏡圖; (c) 2,6-AAQ/rGO-3掃描電鏡圖(插圖:2,6-AAQ/rGO-3復合材料氣凝膠的數碼照片); (d) 2,6-AAQ/rGO-3復合材料的EDS圖; (e) 2,6-AAQ/rGO-3透射電鏡圖; (f~h) 2,6-AAQ/rGO-3中C、N和O元素的mapping圖

    Figure  2.  (a) SEM images of 2,6-AAQ/rGO-1; (b) SEM images of 2,6-AAQ/rGO-2; (c) SEM images of 2,6-AAQ/rGO-3(inset: digital photos of 2,6-AAQ/rGO-3 composite aerogel); (d) EDS diagram of 2,6-AAQ/rGO-3 composite; (e) TEM images of 2,6-AAQ/rGO-3; (f-h) C, N, and O elemental mapping of 2,6-AAQ/rGO-3

    圖  3  (a) 樣品的 XPS全譜;(b) 高分辨C 1s譜圖; (c) 高分辨N 1s譜圖

    Figure  3.  (a) XPS survey spectrum; (b) high resolution X-ray photoelectron spectroscopy of C 1s; (c) high resolution X-ray photoelectron spectroscopy of N 1s

    圖  4  (a) 樣品的XRD圖譜;(b) FTIR譜圖;(c) Raman譜圖; (d) TGA曲線

    Figure  4.  (a) XRD patterns of samples; (b) FTIR spectra; (c) Raman spectra; (d) TGA curves

    圖  5  (a) 模擬的氧化還原反應機理;(b) 2,6-AAQ/rGO-3電極在100 mA·g?1電流下的放電/充電曲線;(c) 不同狀態下2,6-AAQ/rGO-3的非原位FTIR譜圖

    Figure  5.  (a) Simulation of redox reaction mechanism; (b) discharge/charging curve of 2,6-AAQ/rGO-3 electrode at 100 mA g?1; (c) ex situ FTIR spectra of 2,6-AAQ/rGO-3 in different states

    圖  6  (a) 原始電解液的照片,以及分別浸入2 mL電解液中的2,6-AAQ和2,6-AAQ/rGO-3 電極片7 d后的照片;(b) 原始電解液和浸泡7 d后溶液的UV-Vis光譜(電解液由1 mol·L?1雙三氟甲基磺酰亞胺鋰(LITFSI)溶解在體積比為1∶1的乙二醇二甲醚(DME)與1,3-二氧戊環(DOL)溶劑組成)

    Figure  6.  (a) Photographs of the pristine electrolyte and 2,6-AAQ and 2,6-AAQ/rGO-3 electrodes separately immersed in 2 mL electrolyte after 7 days; (b) UV/Vis spectra of the pristine electrolyte and after 7 days of soaking (the electrolyte consisted of 1 mol·L?1 lithium ditrifluoromethyl sulfonimide (LITFSI) dissolved in a 1∶1 volume ratio of ethylene glycol dimethyl ether (DME) and 1, 3-dioxentyl ring (DOL) solvent)

    圖  7  (a) 2,6-AAQ/rGO-1、2,6-AAQ/rGO-2和2,6-AAQ/rGO-3在100 mA·g?1電流下的充放電曲線;(b) 不同電極在不同電流密度下的倍率性能曲線;(c) 循環前原始2,6-AAQ、rGO電極與不同比例2,6-AAQ/rGO電極的電化學阻抗譜;(d) 2,6-AAQ/rGO-3在20~500 mA·g?1的各種電流密度下的放電/充電曲線;(e) 2,6-AAQ/rGO-3電極在1.2~3.8 V電壓范圍內掃描速率為0.1 mV·s?1的CV曲線;(f) 500 mA·g?1下測量的不同電極的循環性能

    Figure  7.  (a) Charge–discharge curves of 2,6-AAQ/rGO-1, 2,6-AAQ/rGO-2 and 2,6-AAQ/rGO-3 at 100 mA·g?1 current density; (b) rate performance of different electrodes under various current rates; (c) EIS spectra of pristine 2,6-AAQ, rGO and 2,6-AAQ/rGO electrodes before cycle; (d) discharge/charge profiles of 2,6-AAQ/rGO-3 at various rates from 20 to 500 mA·g?1; (e) CV curves of the 2,6-AAQ/rGO-3 electrode at a scan rate of 0.1 mV·s?1 in the voltage range of 1.2–3.8 V; (f) cycling performance of different electrodes measured at 500 mA·g?1

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Pomerantseva E, Bonaccorso F, Feng X L, et al. Energy storage: The future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285 doi: 10.1126/science.aan8285
    [2] Kebede A A, Kalogiannis T, van Mierlo J, et al. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev, 2022, 159: 112213 doi: 10.1016/j.rser.2022.112213
    [3] Han X, Zhang C K, Wu H L, et al. Working mechanism and key materials of the lithium ion batteries. Met Funct Mater, 2021, 28(2): 37 doi: 10.13228/j.boyuan.issn1005-8192.20210001

    韓嘯, 張成錕, 吳華龍, 等. 鋰離子電池的工作原理與關鍵材料. 金屬功能材料, 2021, 28(2):37 doi: 10.13228/j.boyuan.issn1005-8192.20210001
    [4] Li Z M, Li B, Feng D, et al. Research progress of cathode materials for lithium-ion battery. Acta Mater Compos Sin, 2022, 39(2): 513

    李仲明, 李斌, 馮東, 等. 鋰離子電池正極材料研究進展. 復合材料學報, 2022, 39(2):513
    [5] Yang Y, He Y P, Zhang P P, et al. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries. Chin J Eng, 2022, 44(3): 367 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203006

    楊溢, 何亞鵬, 張盼盼, 等. 鋰離子電池富鋰正極材料的包覆改性研究進展. 工程科學學報, 2022, 44(3):367 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203006
    [6] Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun, 2020, 11: 1550 doi: 10.1038/s41467-020-15355-0
    [7] Bu X H, Shustova N B, Sargent E H. Editorial for the special issue: Dimensionality of emerging materials and energy. Adv Energy Mater, 2022, 12(4): 2103816 doi: 10.1002/aenm.202103816
    [8] Sethurajan M, Gaydardzhiev S. Bioprocessing of spent lithium ion batteries for critical metals recovery - A review. Resour Conserv Recycl, 2021, 165: 105225 doi: 10.1016/j.resconrec.2020.105225
    [9] Lyu Y C, Wu X, Wang K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater, 2020, 11(2): 2000982
    [10] Deng Y P, Wu Z G, Liang R L, et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv Funct Mater, 2019, 29(19): 1808522 doi: 10.1002/adfm.201808522
    [11] Liu D M, Fan X J, Li Z H, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy, 2019, 58: 786 doi: 10.1016/j.nanoen.2019.01.080
    [12] Zhao S Q, Yan K, Zhang J Q, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew Chem Int Ed Engl, 2021, 60(5): 2208 doi: 10.1002/anie.202000262
    [13] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem, 2020, 4(3): 127 doi: 10.1038/s41570-020-0160-9
    [14] Lee S C, Hong J, Kang K. Redox-active organic compounds for future sustainable energy storage system. Adv Energy Mater, 2020, 10(30): 2001445 doi: 10.1002/aenm.202001445
    [15] Gong Z S, Zheng S L, Zhang J, et al. Cross-linked PVA/HNT composite separator enables stable lithium-organic batteries under elevated temperature. ACS Appl Mater Interfaces, 2022, 14(9): 11474 doi: 10.1021/acsami.1c23962
    [16] Shea J J, Luo C. Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces, 2020, 12(5): 5361 doi: 10.1021/acsami.9b20384
    [17] Chen Y, Wang C L. Designing high performance organic batteries. Acc Chem Res, 2020, 53(11): 2636 doi: 10.1021/acs.accounts.0c00465
    [18] Wu Y C, Chen Y, Tang M, et al. A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: Reconsidering its structures. Chem Commun, 2019, 55(73): 10856 doi: 10.1039/C9CC05679C
    [19] Sun H M, Yan B, Huang W W, et al. Application of Calix[4]quinone in secondary batteries. Energy Storage Sci Technol, 2019, 8(4): 702 doi: 10.12028/j.issn.2095-4239.2019.0023

    孫會民, 閆冰, 黃葦葦, 等. 醌類電極材料Calix[4]quinone在二次電池中的應用. 儲能科學與技術, 2019, 8(4):702 doi: 10.12028/j.issn.2095-4239.2019.0023
    [20] Yan L J, Zhao C X, Sha Y, et al. Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy, 2020, 73: 104766 doi: 10.1016/j.nanoen.2020.104766
    [21] Luo Z Q, Liu L J, Zhao Q, et al. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew Chem Int Ed Engl, 2017, 56(41): 12561 doi: 10.1002/anie.201706604
    [22] Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater, 2017, 16(8): 841 doi: 10.1038/nmat4919
    [23] Gulbahar D, Lu Y, Zhao Q, et al. Quinones as electrode materials for rechargeable lithium batteries. Acta Phys Chimica Sin, 2016, 32(7): 1593 doi: 10.3866/PKU.WHXB201605231

    古麗巴哈爾?達吾提, 盧勇, 趙慶, 等. 可充鋰電池醌類化合物電極材料. 物理化學學報, 2016, 32(7):1593 doi: 10.3866/PKU.WHXB201605231
    [24] Zhu L M, Liu J B, Liu Z Q, et al. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem, 2019, 6(3): 787 doi: 10.1002/celc.201801252
    [25] Zhao Q, Zhu Z, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater, 2017, 29(48): 1607007 doi: 10.1002/adma.201607007
    [26] Zhu T X, Liu D Y, Shi L, et al. Nitrogen-doped hierarchical porous carbon-promoted adsorption of anthraquinone for long-life organic batteries. ACS Appl Mater Interfaces, 2020, 12(31): 34910 doi: 10.1021/acsami.0c08214
    [27] Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li-ion storage capacity. ChemElectroChem, 2021, 8(9): 1678 doi: 10.1002/celc.202100259
    [28] Wang Y Q, Lan H H, Hou Q, et al. Progress in application of anthraquinone organic electrode materials in new secondary batteries. Chin J Rare Met, 2022, 46(2): 238 doi: 10.13373/j.cnki.cjrm.XY20060042

    王玉琪, 藍海航, 侯瓊, 等. 蒽醌類有機電極材料在新型二次電池中的應用研究進展. 稀有金屬, 2022, 46(2):238 doi: 10.13373/j.cnki.cjrm.XY20060042
    [29] Zhang K, Guo C Y, Zhao Q, et al. High-performance organic lithium batteries with an ether-based electrolyte and 9, 10-anthraquinone (AQ)/CMK-3 cathode. Adv Sci, 2015, 2(5): 1500018 doi: 10.1002/advs.201500018
    [30] Yao M, Sano H, Ando H, et al. Anthraquinone-based oligomer as a long cycle-life organic electrode material for use in rechargeable batteries. ChemPhysChem, 2019, 20(7): 967 doi: 10.1002/cphc.201900012
    [31] Li J H, Cai Y F, Wu H M, et al. Polymers in lithium-ion and lithium metal batteries. Adv Energy Mater, 2021, 11(15): 2003239 doi: 10.1002/aenm.202003239
    [32] Huang H B, Shi H D, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater, 2020, 30(41): 1909035 doi: 10.1002/adfm.201909035
    [33] Zhou T Z, Cheng Q F. Chemical strategies for making strong graphene materials. Angew Chem Int Ed Engl, 2021, 60(34): 18397 doi: 10.1002/anie.202102761
    [34] Olabi A G, Abdelkareem M A, Wilberforce T, et al. Application of graphene in energy storage device - A review. Renew Sustain Energy Rev, 2021, 135: 110026 doi: 10.1016/j.rser.2020.110026
    [35] Luo Z Q, Liu L J, Ning J X, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed Engl, 2018, 57(30): 9443 doi: 10.1002/anie.201805540
    [36] Weng C J, Shi Y X, He D F, et al. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity. CIESC J, 2018, 69(7): 3263

    翁程杰, 史葉勛, 何大方, 等. 水熱法制備還原氧化石墨烯及其導電性調控. 化工學報, 2018, 69(7):3263
    [37] Jankovsky O, Marvan P, Nová?ek M, et al. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl Mater Today, 2016, 4: 45 doi: 10.1016/j.apmt.2016.06.001
    [38] Wang H W, Zhang Y, Ang H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater, 2016, 26(18): 3082 doi: 10.1002/adfm.201505240
    [39] Tang M, Zhu S L, Liu Z T, et al. Tailoring π-conjugated systems: From π-π stacking to high-rate-performance organic cathodes. Chem, 2018, 4(11): 2600 doi: 10.1016/j.chempr.2018.08.014
    [40] Zhao L, Wang A B, Wang W K, et al. Preparation and electrochemical performance of aminoanthraquinone derivative as cathode materials in rechargeable lithium batteries. Acta Phys-chim Sin, 2012, 28(3): 596 doi: 10.3866/PKU.WHXB201112261

    趙磊, 王安邦, 王維坤, 等. 氨基蒽醌衍生物的合成及其用作鋰電池正極材料的電化學性能. 物理化學學報, 2012, 28(3):596 doi: 10.3866/PKU.WHXB201112261
    [41] Luo Z Q, Zheng S L, Zhao S, et al. High energy density aqueous zinc-benzoquinone battery enabled by carbon cloth with multiple anchoring effects. J Mater Chem A, 2021, 9(10): 6138
    [42] Hu B L H, Wu F Y, Lin C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun, 2013, 4: 1687 doi: 10.1038/ncomms2705
  • 加載中
圖(7)
計量
  • 文章訪問數:  577
  • HTML全文瀏覽量:  282
  • PDF下載量:  78
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-22
  • 網絡出版日期:  2022-07-11
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回