<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

開澆過程二次氧化對鋁脫氧不銹鋼中夾雜物的影響

凌海濤 吳錦圓 常立忠 楊樹峰 仇圣桃

凌海濤, 吳錦圓, 常立忠, 楊樹峰, 仇圣桃. 開澆過程二次氧化對鋁脫氧不銹鋼中夾雜物的影響[J]. 工程科學學報, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002
引用本文: 凌海濤, 吳錦圓, 常立忠, 楊樹峰, 仇圣桃. 開澆過程二次氧化對鋁脫氧不銹鋼中夾雜物的影響[J]. 工程科學學報, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002
LING Hai-tao, WU Jin-yuan, CHANG Li-zhong, YANG Shu-feng, QIU Sheng-tao. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process[J]. Chinese Journal of Engineering, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002
Citation: LING Hai-tao, WU Jin-yuan, CHANG Li-zhong, YANG Shu-feng, QIU Sheng-tao. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process[J]. Chinese Journal of Engineering, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002

開澆過程二次氧化對鋁脫氧不銹鋼中夾雜物的影響

doi: 10.13374/j.issn2095-9389.2022.03.22.002
基金項目: 安徽省高校自然科學研究資助項目(KJ2021A0396);鋼鐵冶金新技術國家重點實驗室開放基金資助項目(KF21-03)
詳細信息
    通訊作者:

    E-mail: linghaitao@ahut.edu.cn

  • 中圖分類號: TG142.71

Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process

More Information
  • 摘要: 為了研究鋁脫氧不銹鋼開澆過程中二次氧化對鋼水潔凈度和夾雜物演變的影響,實現鋼中夾雜物的有效控制,分別在LF精煉出站、開澆過程中不同時刻取樣,采用掃描電鏡、ASPEX自動分析儀、熱力學計算等不同方法研究了鋁脫氧不銹鋼中夾雜物的形貌、成分、數量和尺寸分布,確定了鋁脫氧不銹鋼開澆過程中夾雜物的演變行為和對應機理。研究結果表明,開澆過程鋼中氧氮質量分數、夾雜物數密度變化規律類似,20 min時分別增加至7.4×10?5、0.0674%、17.1 mm?2,此后隨著澆鑄過程進行逐漸降低;LF精煉出站時鈣處理改性夾雜物效果較好,其類型主要為CaO?Al2O3?SiO2?MgO,開澆過程中二次氧化降低了鈣處理操作的作用效果,20 min時夾雜物類型轉變為MnO?Al2O3?SiO2?CaO復合夾雜物,澆鑄約60 min時,連鑄過程中鋼水的潔凈度基本達到穩定,此時夾雜物類型重新轉變為CaO?Al2O3?SiO2?MgO;二次氧化使得鋼液中氧質量分數較高,促進了MnO?Al2O3-SiO2?CaO夾雜物的生成,而鋼中大尺寸的CaO?Al2O3?SiO2?MnO?(MgO)夾雜物主要通過夾雜物間的碰撞聚合形成;凝固過程中隨著溫度的降低,促進了MgO?Al2O3尖晶石相和CaO?2MgO?8Al2O3相的析出,提高了夾雜物中Al2O3組分的含量。

     

  • 圖  1  取樣示意圖. (a) 提桶樣; (b) 圓坯樣

    Figure  1.  Schematic diagram of taking samples: (a) bucket-shaped sample; (b) round billet (RB)

    圖  2  鋼中氧氮質量分數和夾雜物數密度變化

    Figure  2.  Variations of the total oxygen and nitrogen contents and number density of inclusions in the steel

    圖  3  LF出站時鋼中夾雜物典型形貌和成分

    Figure  3.  Typical morphology and composition of inclusions in the steel at LF departure

    圖  4  LF出站時鋼中夾雜物成分分布

    Figure  4.  Composition distribution of inclusions in the steel at LF departure

    圖  5  LF出站時鋼中典型夾雜物面掃描分布

    Figure  5.  Element mapping of typical inclusions in the steel at LF departure

    圖  6  不同時刻鑄坯內夾雜物成分變化. (a) 開澆20 min; (b) 開澆40 min; (c) 開澆60 min; (d) 正常澆鑄

    Figure  6.  Variation of the composition of inclusions in the round billet: (a) casting 20 min; (b) casting 40 min; (c) casting 60 min; (d) casting at steady state

    圖  7  不同時刻鑄坯內夾雜物典型形貌和成分. (a, b) 開澆20 min; (c, d) 開澆40 min; (e, f) 開澆60 min

    Figure  7.  Typical morphology and composition of inclusions in the round billet: (a, b) casting 20 min; (c, d) casting 40 min; (e, f) casting 60 min

    圖  8  開澆20 min時鑄坯內典型夾雜物線掃描結果

    Figure  8.  SEM line scanning of typical inclusions in the round billet at casting 20 min

    圖  9  鋼中夾雜物平均成分變化

    Figure  9.  Variation of average composition of inclusions in the steel

    圖  10  鑄坯內CaO?Al2O3?SiO2系夾雜物成分分布. (a) 開澆60 min; (b) 正常澆鑄

    Figure  10.  Composition distribution of CaO?Al2O3?SiO2 inclusions in the round billet: (a) casting 60 min; (b) casting at steady state

    圖  11  鑄坯內CaO?Al2O3?MgO系夾雜物成分分布. (a) 開澆60 min; (b) 正常澆鑄

    Figure  11.  Composition distribution of CaO?Al2O3?MgO inclusions in the round billet: (a) casting 60 min; (b) casting at steady state

    圖  12  1773 K下二次氧化過程鋼中夾雜物成分預測

    Figure  12.  Predicted composition of inclusions in the steel during reoxidation at 1773 K

    圖  13  開澆20 min時鑄坯內夾雜物成分與直徑的關系. (a) Al2O3; (b) CaO; (c) SiO2; (d) MnO

    Figure  13.  Relationship between composition and diameter of inclusions in the round billet at casting 20 min: (a) Al2O3; (b) CaO; (c) SiO2; (d) MnO

    圖  14  開澆20 min時鑄坯內CaO?Al2O3?SiO2?MnO?(MgO)系夾雜物典型形貌和成分

    Figure  14.  Typical morphology and composition of CaO?Al2O3?SiO2?MnO?(MgO) inclusions in the round billet at casting 20 min

    圖  15  凝固過程鋼中氧化物夾雜析出轉變. (a) 相轉變; (b) 組分含量

    Figure  15.  Transformation of precipitation of oxide inclusions in the steel during solidification: (a) phase transformation; (b) composition

    圖  16  開澆過程鋼中夾雜物的演變機理

    Figure  16.  Evolution mechanism of inclusions in the steel during casting start process

    表  1  鋁脫氧不銹鋼典型成分(質量分數)

    Table  1.   Chemical composition of Al-killed stainless steel %

    CSiMnPSNiCrMoAlCaMgN
    0.0180.480.980.0390.00310.0716.282.070.0060.00180.00080.063
    下載: 導出CSV

    表  2  取樣過程和鋼中夾雜物分析

    Table  2.   Taking samples and inclusion analysis in the steel

    Heat No.SamplingScanning area/mm2Number of inclusions
    1#LF departure50.0485
    RB at casting 20 min50.0855
    RB at casting 40 min50.0609
    RB casting 60 min48.9345
    2#RB at a steady state48.9204
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [2] Kim W Y, Nam G J, Kim S Y. Evolution of non-metallic inclusions in Al-killed stainless steelmaking. Metall Mater Trans B, 2021, 52(3): 1508 doi: 10.1007/s11663-021-02119-4
    [3] Hua C J, Wang M, Zhang M Y, et al. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, 2021, 43(7): 925

    華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, 2021, 43(7):925
    [4] Wang Q M, Cheng G G. Metallurgy development of Ti-stabilized stainless steel. Chin J Eng, 2021, 43(11): 1447

    王啟明, 成國光. 含Ti不銹鋼冶金工藝進展. 工程科學學報, 2021, 43(11):1447
    [5] Park J H, Lee S B, Kim D S. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment. Metall Mater Trans B, 2005, 36(1): 67 doi: 10.1007/s11663-005-0007-2
    [6] Ren Y, Zhang L F, Fang W, et al. Effect of slag composition on inclusions in Si-deoxidized 18Cr–8Ni stainless steels. Metall Mater Trans B, 2016, 47(2): 1024 doi: 10.1007/s11663-015-0554-0
    [7] Zhang L C, Bao Y P, Wang M, et al. Reoxidation control of refining slag and inclusion modification in TP347H stainless steel. Chin J Eng, 2016, 38(Suppl 1): 1

    張樂辰, 包燕平, 王敏, 等. TP347H精煉渣二次氧化控制及夾雜物變性處理. 工程科學學報, 2016, 38(Suppl 1):1
    [8] Guo J, Han S W, Chen X R, et al. Control of non-metallic inclusion plasticity and steel cleanliness for ultrathin 18 pct Cr-8 pct Ni stainless steel strip. Metall Mater Trans B, 2020, 51(4): 1813 doi: 10.1007/s11663-020-01862-4
    [9] Zhang Y M, Sun Y H, Bai X F, et al. Three-dimensional morphology and thermodynamic calculation of inclusions in stainless steel. Chin J Eng, 2020, 42(Suppl 1): 14

    張一民, 孫彥輝, 白雪峰, 等. 不銹鋼中夾雜物三維形貌及其熱力學計算. 工程科學學報, 2020, 42(Suppl 1):14
    [10] Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3–MgO inclusions in aluminum killed ferritic stainless steel. ISIJ Int, 2000, 40(2): 121 doi: 10.2355/isijinternational.40.121
    [11] Todoroki H, Mizuno K. Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum. ISIJ Int, 2004, 44(8): 1350 doi: 10.2355/isijinternational.44.1350
    [12] Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567

    李璟宇, 成國光, 李六一, 等. 202不銹鋼中非金屬夾雜物的形成機理. 工程科學學報, 2019, 41(12):1567
    [13] Ren Y, Zhang L F, Yang W. Review of control of inclusions in stainless steel. Steelmaking, 2014, 30(1): 71 doi: 10.3969/j.issn.1002-1043.2014.01.018

    任英, 張立峰, 楊文. 不銹鋼中夾雜物控制綜述. 煉鋼, 2014, 30(1):71 doi: 10.3969/j.issn.1002-1043.2014.01.018
    [14] Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish. ISIJ Int, 2016, 56(4): 584 doi: 10.2355/isijinternational.ISIJINT-2015-694
    [15] Xu H K, Huang Q Z, Xie M Y, et al. Effect of reoxidation on cleanliness of 304 stainless steel in tundish. China Metall, 2018, 28(Suppl 1): 76 doi: 10.13228/j.boyuan.issn1006-9356.2018s014

    徐海坤, 黃慶周, 謝明耀, 等. 中間包二次氧化對304不銹鋼潔凈度的影響. 中國冶金, 2018, 28(Suppl 1):76 doi: 10.13228/j.boyuan.issn1006-9356.2018s014
    [16] Fu B H, Chen C, Cheng G G, et al. Inclusions in 430 stainless steelmaking during AOD-LF-CC process. Iron Steel, 2012, 47(1): 40 doi: 10.13228/j.boyuan.issn0449-749x.2012.01.017

    付邦豪, 陳超, 成國光, 等. 430不銹鋼冶煉過程的夾雜物. 鋼鐵, 2012, 47(1):40 doi: 10.13228/j.boyuan.issn0449-749x.2012.01.017
    [17] Goto H, Miyazawa K I. Reoxidation behavior of molten steel in non-killed and Al-killed steels. ISIJ Int, 1998, 38(3): 256 doi: 10.2355/isijinternational.38.256
    [18] Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness. ISIJ Int, 2003, 43(3): 271 doi: 10.2355/isijinternational.43.271
    [19] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.2013.09.004

    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1 doi: 10.13228/j.boyuan.issn0449-749x.2013.09.004
    [20] Yan P C, van Ende M A, Zinngrebe E, et al. Interaction between steel and distinct gunning materials in the tundish. ISIJ Int, 2014, 54(11): 2551 doi: 10.2355/isijinternational.54.2551
    [21] Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish. Metall Mater Trans B, 2017, 48(3): 1736 doi: 10.1007/s11663-017-0971-3
    [22] Wang F, Liu D X, Liu W, et al. Reoxidation of Al-killed steel by Cr2O3 from tundish cover flux. Metals, 2019, 9(5): 554 doi: 10.3390/met9050554
    [23] Zhu T H, Zhou Q Y, Ren Y, et al. Inclusion evolution in IF steel during tundish reoxidation. Iron Steel, 2020, 55(3): 35 doi: 10.13228/j.boyuan.issn0449-749x.20190242

    朱坦華, 周秋月, 任英, 等. 二次氧化過程IF鋼中間包中夾雜物演變行為. 鋼鐵, 2020, 55(3):35 doi: 10.13228/j.boyuan.issn0449-749x.20190242
    [24] Yang G W, Wang X H, Huang F X, et al. Influence of reoxidation in tundish on inclusion for Ca-treated Al-killed steel. Steel Res Int, 2014, 85(5): 784 doi: 10.1002/srin.201300243
    [25] Xu M M, Shang Z H, Ling H T, et al. Composition evolution of inclusions in 316L stainless steel refining process. Steelmaking, 2021, 37(2): 16

    許苗苗, 尚正鴻, 凌海濤, 等. 316L不銹鋼精煉過程中夾雜物成分演變. 煉鋼, 2021, 37(2):16
    [26] Jiang M, Wang X H, Chen B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag. ISIJ Int, 2010, 50(1): 95 doi: 10.2355/isijinternational.50.95
    [27] Yang S F, Wang Q Q, Zhang L F, et al. Formation and modification of MgO·Al2O3-based inclusions in alloy steels. Metall Mater Trans B, 2012, 43(4): 731 doi: 10.1007/s11663-012-9663-1
    [28] Kim J W, Kim S K, Kim D S, et al. Formation mechanism of Ca?Si?Al?Mg?Ti?O inclusions in type 304 stainless steel. ISIJ Int, 1996, 36(Suppl 1): S140
    [29] Yin X, Sun Y H, Yang Y D, et al. Inclusion evolution during refining and continuous casting of 316L stainless steel. Ironmak Steelmak, 2016, 43(7): 533 doi: 10.1080/03019233.2015.1125599
    [30] Li J Y, Cheng G G, Li L Y, et al. The formation mechanism of Mn?Al?O inclusions in Fe?Cr?Mn stainless steel during continuous casting. Steel Res Int, 2018, 89(5): 1700461 doi: 10.1002/srin.201700461
  • 加載中
圖(16) / 表(2)
計量
  • 文章訪問數:  488
  • HTML全文瀏覽量:  153
  • PDF下載量:  105
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-22
  • 網絡出版日期:  2022-06-14
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回