Studies on thermal conductivity and durability of modified steel slag/rubber composites
-
摘要: 利用自制鋼渣助磨改性劑處理熱悶渣、電爐渣與風淬渣,將改性后的鋼渣微粉與炭黑、橡膠基體等復合形成改性鋼渣/橡膠復合材料。采用導熱系數儀,測定三種改性鋼渣/橡膠復合材料熱氧老化1、3、5、7、9、11 d的導熱系數;根據Young’s與Flory方程計算出三種改性鋼渣/橡膠復合材料熱氧老化前后的接觸角θ與交聯密度;采用熱重分析儀(TGA)、場發射掃描電鏡(SEM)進行熱氧老化前后分析。未熱氧老化時,在三種改性鋼渣/橡膠復合材料中改性電爐鋼渣/橡膠復合材料的導熱系數最低,為0.187 W·m?1·K?1,是因為改性電爐渣粒中位徑(d50)最小,即3.49 μm,形成更致密的膠裹渣結構,不易形成導熱通路,使其導熱系數降低。熱氧老化時,破壞膠裹渣結構,改性電爐渣/橡膠復合材料形成的孔隙大,分散性最好,降低界面熱阻,更易形成導熱通路,使其導熱系數最高。熱氧老化后,橡膠復合材料表面粗糙度變大且存在較長裂紋與較深孔洞,導致橡膠復合材料吸水性增加,接觸角下降。由于改性熱悶渣的粒徑最大,在熱作用下氧氣更容易進入橡膠復合材料中與橡膠分子鏈(雙鍵)發生反應生成自由基,增加分子量,提高交聯密度;由于改性風淬渣的堿度最高,為3.3,不利于硫化過程,更易形成的不穩定碳層,使二次燃燒更加充分,導致交聯密度變小,在800 ℃時,熱氧老化后,改性風淬渣/橡膠復合材料殘余物炭渣質量分數僅為1.02%,耐久性最差。Abstract: Modified steel slag powder was used to create a modified steel slag/rubber composite material using self-made steel slag grinding modifier and combining it with carbon black and rubber matrix to treat hot braised steel slag, electric furnace steel slag, and air-quenched steel slag. Next, the thermal conductivity of the three types of modified steel slag/rubber composites was measured using a thermal conductivity instrument at 1, 3, 5, 7, 9, and 11 days. The surface contact angle θ and crosslinking density of the above composites were calculated using Young’s and Flory’s equations before and after thermal oxygen aging, and their changes were analyzed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). As a result, the thermal conductivity of the modified electric furnace slag/rubber composite material was the lowest [0.187 W·m?1·K?1]. Among them, the median diameter (d50) of the modified electric furnace slag particles was the smallest (3.49 μm) without thermal oxygen aging, easily forming a compact structure of rubber-wrapped slag, but more challenging to develop thermal conductivity paths that reduced thermal conductivity. In the process of thermal oxygen aging, the structure of rubber-wrapped slag was destroyed. While the modified electric furnace slag/rubber composite material had large pores and the best dispersibility, which reduced interface thermal resistance and easily formed thermal conductivity paths, its thermal conductivity was the highest. After thermal oxygen aging, it was found that long cracks, deep holes, and increased roughness lying on rubber composite material surface increase the water absorption and decrease the contact angle. Besides, due to the largest particle size of the modified hot braised slag, oxygen is more likely to enter the rubber composite material under the heat action to react with the rubber molecular chain (double bond) to generate free radicals, thus raising molecular weight and growing crosslinking density. The modified air-quenched slag had the highest basicity (3.3), was detrimental to the vulcanization process, and was prone to forming an unstable carbon layer, resulting in more secondary combustion and a lower crosslinking density. Moreover, the mass fraction of residual material called carbon residue was only 1.02% at 800 ℃ and it had the worst durability after thermal oxygen aging.
-
Key words:
- modified steel slag /
- rubber /
- thermal oxygen aging /
- thermal conductivity /
- crosslinking density
-
圖 3 改性鋼渣/橡膠復合材料熱氧老化前后的SEM圖. (a) ZL0熱氧老化前;(b) ZL1熱氧老化前;(c) ZL2熱氧老化前;(d) ZL3熱氧老化前;(e) ZL0熱氧老化后;(f) ZL1熱氧老化后;(g) ZL2熱氧老化后;(h) ZL3熱氧老化后
Figure 3. Scanning electron microscopy image of modified steel slag/rubber composites before and after thermal oxygen aging: (a) ZL0 before thermal oxygen aging; (b) ZL1 before thermal oxygen aging; (c) ZL2 before thermal oxygen aging; (d) ZL3 before thermal oxygen aging; (e) ZL0 after thermal oxygen aging; (f) ZL1 after thermal oxygen aging; (g) ZL2 after thermal oxygen aging; (h) ZL3 after thermal oxygen aging
表 1 改性鋼渣/橡膠復合材料原料配比
Table 1. Raw material ratio of modified steel slag/rubber composite material
Sample Type of modified steel slag Modified steel slag/g Carbon black/g Rubber/g Stearic acid/g Zinc oxide/g Accelerator/g Sulfur/g ZL0 30 100 1 3 1 2 ZL1 Hot braised slag 20 30 100 1 3 1 2 ZL2 Air quenched slag 20 30 100 1 3 1 2 ZL3 Electric furnace slag 20 30 100 1 3 1 2 表 2 改性鋼渣微粉化學成分與粒徑
Table 2. Chemical composition and particle size of modified steel slag
Type of modified steel slag Chemical composition of modified steel slag(mass fraction)/% Particle size of modified steel slag/μm CaO Fe2O3 SiO2 MgO MnO P2O5 Al2O3 Others d90 d50 d10 Hot braised slag 46.16 25.21 13.06 4.51 2.78 2.47 2.95 2.648 20.90 7.59 2.86 Air quenched slag 46.68 28.14 10.71 4.81 2.32 2.47 3.38 1.49 9.90 3.82 1.06 Electric furnace slag 36.36 39.29 10.97 3.18 3.21 1.06 4.25 1.38 10.02 3.49 1.11 表 3 改性鋼渣/橡膠復合材料熱氧老化的導熱系數
Table 3. Thermal conductivity of modified steel slag/rubber composites during thermal oxygen aging W·m?1·K?1
Sample Thermal conductivity corresponding to
thermal oxygen aging days0 d 1 d 3 d 5 d 7 d 9 d 11 d ZL1 0.192 0.234 0.223 0.219 0.210 0.199 0.184 ZL2 0.189 0.232 0.228 0.217 0.213 0.193 0.179 ZL3 0.187 0.253 0.230 0.229 0.221 0.209 0.187 www.77susu.com -
參考文獻
[1] Dong M J, Zhang J C, Liu L, et al. Research progress in thermal conductive rubber. Polym Bull, 2018(4): 15 doi: 10.14028/j.cnki.1003-3726.2018.04.002董夢杰, 張繼川, 劉力, 等. 導熱橡膠研究進展. 高分子通報, 2018(4):15 doi: 10.14028/j.cnki.1003-3726.2018.04.002 [2] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979 [3] Feng T, Zhang X J. Research progress of thermal conductive rubber technology. China Rubber Ind, 2017, 64(9): 569 doi: 10.3969/j.issn.1000-890X.2017.09.012馮濤, 張新軍. 導熱橡膠技術的研究進展. 橡膠工業, 2017, 64(9):569 doi: 10.3969/j.issn.1000-890X.2017.09.012 [4] Song J P, Tian K Y, Ma L X, et al. The effect of carbon black morphology to the thermal conductivity of natural rubber composites. Int J Heat Mass Transf, 2019, 137: 184 doi: 10.1016/j.ijheatmasstransfer.2019.03.078 [5] Zhang X G, Gai P X, Zhang B K, et al. Thermal conductivity of rubber composite materials with a hybrid AlN/carbon fiber filler. Chin Sci Bull, 2018, 63(23): 2403 doi: 10.1360/N972017-01319張曉光, 蓋鵬興, 張寶庫, 等. AlN/碳纖維混合填充橡膠復合材料的導熱性能. 科學通報, 2018, 63(23):2403 doi: 10.1360/N972017-01319 [6] Xie Z J, Sebald G, Guyomar D. Comparison of direct and indirect measurement of the elastocaloric effect in natural rubber. Appl Phys Lett, 2016, 108(4): 041901 doi: 10.1063/1.4940378 [7] Ren Z X, Zhang H L, Huang J, et al. Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism. J Alloys Compd, 2022, 910: 164814 doi: 10.1016/j.jallcom.2022.164814 [8] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375 [9] Zhang H. Cu?Ce/TiO2. moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100 [10] Zhuang Y. Research on Durability and Life Prediction of Recycled Aggregate of Self-Compacting Concrete with Steel Slag [Dissertation]. Zhenjiang: Jiangsu University of Science and Technology, 2017莊園. 摻鋼渣再生骨料自密實混凝土耐久性及壽命預測研究[學位論文]. 鎮江: 江蘇科技大學, 2017 [11] Wang J F, Fu H Y, Yan X T, et al. Research status of comprehensive utilization of steel slag. China Nonferrous Metall, 2021, 50(6): 77 doi: 10.19612/j.cnki.cn11-5066/tf.2021.06.015王吉鳳, 付恒毅, 閆曉彤, 等. 鋼渣綜合利用研究現狀. 中國有色冶金, 2021, 50(6):77 doi: 10.19612/j.cnki.cn11-5066/tf.2021.06.015 [12] Yang S J, Zhang B, Yang Y D, et al. Research on the status of comprehensive utilization of steel slag. Ind Miner Process, 2021, 50(4): 31楊素潔, 張冰, 楊亞東, 等. 鋼渣綜合利用現狀研究. 化工礦物與加工, 2021, 50(4):31 [13] Zhang H, Zang J J, Li H L, et al. Research status and application of phase change humidity storage composite materials. J Mater Eng, 2021, 49(5): 56 doi: 10.11868/j.issn.1001-4381.2020.000792張浩, 臧君杰, 李海麗, 等. 相變儲濕復合材料及其應用研究進展. 材料工程, 2021, 49(5):56 doi: 10.11868/j.issn.1001-4381.2020.000792 [14] Qian L X, Zhao B J, Wang H Y, et al. Valorization of the spent catalyst from flue gas denitrogenation by improving bio-oil production from hydrothermal liquefaction of pinewood sawdust. Fuel, 2022, 312(4): 122804 [15] Long H M, Wang K X, Liu Z M, et al. Properties and reinforcement-flame retardant mechanism of steel slag ultrafine powder/rubber composites. Acta Mater Compos Sin, 2020, 37(4): 944 doi: 10.13801/j.cnki.fhclxb.20190828.001龍紅明, 王凱祥, 劉自民, 等. 鋼渣超微粉/橡膠復合材料的性能及補強-阻燃機制. 復合材料學報, 2020, 37(4):944 doi: 10.13801/j.cnki.fhclxb.20190828.001 [16] Gu H X, Li H, Jin Q, et al. Effect of molten iron desulphurization slag to replace carbon black on the properties of styrene butadiene rubber. J Build Mater, 2017, 20(6): 925 doi: 10.3969/j.issn.1007-9629.2017.06.016顧恒星, 李輝, 金強, 等. 鐵水脫硫渣取代炭黑對丁苯橡膠性能的影響. 建筑材料學報, 2017, 20(6):925 doi: 10.3969/j.issn.1007-9629.2017.06.016 [17] Shen H Y, Wang Z Z. Surface modification of steel slag and its application in compounded rubber. Mater Rev, 2018, 32(6): 1000 doi: 10.11896/j.issn.1005-023X.2018.06.027沈海洋, 王正洲. 鋼渣的表面改性及其在橡膠中應用研究. 材料導報, 2018, 32(6):1000 doi: 10.11896/j.issn.1005-023X.2018.06.027 [18] Zhang H, Li H L, Gao Q, et al. Safety analysis of specialty-steel slag used as rubber functional filler. Chin J Eng, 2020, 42(5): 628張浩, 李海麗, 高青, 等. 特殊鋼鋼渣用作橡膠功能填料及其安全性分析. 工程科學學報, 2020, 42(5):628 [19] Zhang H, Li H L, Long H M, et al. Spectroscopic analysis of reinforcing-flame retardant mechanism of modified steel slag-mineral powder composite rubber filler. Spectrosc Spectr Anal, 2021, 41(4): 1138張浩, 李海麗, 龍紅明, 等. 改性鋼渣?礦粉復合橡膠填料補強-阻燃機理的光譜學分析. 光譜學與光譜分析, 2021, 41(4):1138 [20] Zhang H, Li Z H. Micro RNA-16 via twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med, 2019, 14: 673 [21] Zhu Z H. Effect of Aging on Structure and Properties of PP/SSFs Conductive Composites [Dissertation]. Ningbo: Ningbo University, 2018朱振華. 老化對PP/SSFs導電復合材料的結構與性能的影響研究[學位論文]. 寧波: 寧波大學, 2018 [22] Li Z H. Study on the Aging of Ethylene-Propylene-Diene Monomer [Dissertation]. Xiamen: Xiamen University, 2018李志輝. 三元乙丙橡膠老化研究[學位論文]. 廈門: 廈門大學, 2018 [23] Zhang Y N, Shan C H, Zheng Y, et al. Mechanical tests of circular plain chloroprene rubber bearings of highway bridge under freeze-thaw cycle condition. Ind Constr, 2013, 43(Suppl 1): 594張延年, 單春紅, 鄭怡, 等. 凍融條件下公路橋梁板式圓形氯丁橡膠支座力學性能試驗. 工業建筑, 2013, 43(Suppl 1):594 [24] Zheng N. Research on the Performance Deterioration Law of High Damping Rubber Bearings Under Seawater Freeze-Thaw Cycle [Dissertation]. Guangzhou: Guangzhou University, 2019鄭寧. 高阻尼橡膠隔震支座在海洋凍融循環作用下的劣化性能研究[學位論文]. 廣州: 廣州大學, 2019 [25] Xu Z J, Song Y H, Zheng Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer, 2019, 185: 121953 doi: 10.1016/j.polymer.2019.121953 [26] Xiao H. Study on Durability of Rubber Concrete Under Freeze-Thaw Cycle and Chloride Ion Erosion [Dissertation]. Shenyang: Shenyang University, 2020肖輝. 凍融循環和氯離子侵蝕耦合作用下橡膠混凝土耐久性研究[學位論文]. 沈陽: 沈陽大學, 2020 [27] Du C. Research on the Influence of Winter Marine Environment on Natural Rubber Isolation Bearings in the North of China [Dissertation]. Guangzhou: Guangzhou University, 2018杜暢. 北方冬季海洋環境對天然橡膠隔震支座的影響研究[學位論文]. 廣州: 廣州大學, 2018 [28] Ding L. Study on the Aging of Natural Rubber and Isoprene Rubber [Dissertation]. Xiamen: Xiamen University, 2018丁玲. 天然橡膠和異戊橡膠老化研究[學位論文]. 廈門: 廈門大學, 2018 [29] Li B P, Long H M, Liu Z M, et al. Preparation of high strength-wear resistant styrene butadiene rubber composite materials with steel slag ultrafine powder replacing partial carbon black and study on their properties. Mod Chem Ind, 2021, 41(1): 149 doi: 10.16606/j.cnki.issn0253-4320.2021.01.030李幫平, 龍紅明, 劉自民, 等. 鋼渣超微粉取代部分炭黑高強耐磨型丁苯橡膠復合材料的制備及其性能研究. 現代化工, 2021, 41(1):149 doi: 10.16606/j.cnki.issn0253-4320.2021.01.030 [30] Chen J Y. The Preparation and Properties of P(VDF-TrFE) Based Electro Wetting Dielectric Materials [Dissertation]. Hangzhou: Zhejiang University, 2019陳佳云. P(VDF-TrFE)基介電潤濕材料的制備及性能研究[學位論文]. 杭州: 浙江大學, 2019 [31] Lan M J, Wen Q Z, Zhu J H. Preparation and application of self-cleaning coating. Mater Prot, 2020, 53(3): 129 doi: 10.16577/j.cnki.42-1215/tb.2020.03.024藍敏杰, 文慶珍, 朱金華. 自清潔涂層的制備及應用研究進展. 材料保護, 2020, 53(3):129 doi: 10.16577/j.cnki.42-1215/tb.2020.03.024 [32] Zhang H. Magnetic properties and thermal stability of SrFe12O19/gamma-Fe4N composites with effective magnetic exchange coupling. Ceram Int, 2020, 46(7): 9972 doi: 10.1016/j.ceramint.2019.12.220 [33] Zeng X K, Chu F H, Hao J G, et al. Study on thermal-oxidative aging mechanism of neoprene compound based on microscopic characterization methods. China Rubber Ind, 2018, 65(3): 335 doi: 10.3969/j.issn.1000-890X.2018.03.020曾憲奎, 褚福海, 郝建國, 等. 基于微觀表征方法的氯丁橡膠膠料熱氧老化機理的研究. 橡膠工業, 2018, 65(3):335 doi: 10.3969/j.issn.1000-890X.2018.03.020 [34] Qian Y, Wu H F, Yuan D Z, et al. In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci, 2015, 132(44): 42724 [35] Li N, Lu X S, Long J, et al. Study on the effect of surface roughness on the bonding performance of eucalyptus grandis veneer. China Wood Based Panels, 2020, 27(3): 16 doi: 10.3969/j.issn.1673-5064.2020.03.004李寧, 陸顯壽, 龍軍, 等. 巨尾桉單板表面粗糙度對其膠合性能影響的研究. 中國人造板, 2020, 27(3):16 doi: 10.3969/j.issn.1673-5064.2020.03.004 [36] Liu Z J, Wang X P, Chen X S, et al. Study on aging properties of GMMT/carbon black/NR composite. China Rubber Ind, 2010, 57(1): 12 doi: 10.3969/j.issn.1000-890X.2010.01.002劉志堅, 王小萍, 陳曉尚, 等. 固相改性有機蒙脫土/炭黑/NR復合材料的耐老化性能研究. 橡膠工業, 2010, 57(1):12 doi: 10.3969/j.issn.1000-890X.2010.01.002 -