<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

磷酸釩鹽在水系鋅離子電池中的應用

黃巧鋒 潘瑞梅 彭瀚東 王怡琪 史曉艷 蔡俊杰 邵漣漪 孫志鵬

黃巧鋒, 潘瑞梅, 彭瀚東, 王怡琪, 史曉艷, 蔡俊杰, 邵漣漪, 孫志鵬. 磷酸釩鹽在水系鋅離子電池中的應用[J]. 工程科學學報, 2023, 45(7): 1175-1186. doi: 10.13374/j.issn2095-9389.2022.03.19.002
引用本文: 黃巧鋒, 潘瑞梅, 彭瀚東, 王怡琪, 史曉艷, 蔡俊杰, 邵漣漪, 孫志鵬. 磷酸釩鹽在水系鋅離子電池中的應用[J]. 工程科學學報, 2023, 45(7): 1175-1186. doi: 10.13374/j.issn2095-9389.2022.03.19.002
HUANG Qiao-feng, PAN Rui-mei, PENG Han-dong, WANG Yi-qi, SHI Xiao-yan, CAI Jun-jie, SHAO Lian-yi, SUN Zhi-peng. Application of vanadium phosphate in aqueous zinc-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1175-1186. doi: 10.13374/j.issn2095-9389.2022.03.19.002
Citation: HUANG Qiao-feng, PAN Rui-mei, PENG Han-dong, WANG Yi-qi, SHI Xiao-yan, CAI Jun-jie, SHAO Lian-yi, SUN Zhi-peng. Application of vanadium phosphate in aqueous zinc-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1175-1186. doi: 10.13374/j.issn2095-9389.2022.03.19.002

磷酸釩鹽在水系鋅離子電池中的應用

doi: 10.13374/j.issn2095-9389.2022.03.19.002
基金項目: 國家自然科學基金青年科學基金資助項目(21905058)
詳細信息
    通訊作者:

    邵漣漪,E-mail: shaolianyi@gdut.edu.cn

    孫志鵬,zpsunxj@gdut.edu.cn

  • 中圖分類號: TM912.9

Application of vanadium phosphate in aqueous zinc-ion batteries

More Information
  • 摘要: 鋰離子電池因鋰資源儲量有限、分布不均及一定的安全問題,導致其在大型儲能領域的應用受限。水系鋅離子電池因其資源豐富、安全環保、易于組裝以及價格低廉等優勢在大規模儲能領域具有極大前景。但是由于鋅離子與正極材料基體具有較強的靜電吸附作用,導致其動力學緩慢以及部分正極材料在水系電解液中存在溶解等問題,限制了水系鋅離子電池的發展。在目前的正極材料中,磷酸釩鹽因其結構穩定、電壓平臺高、功率密度高等特點受到研究者的關注。然而,磷酸釩鹽作為水系鋅離子電池正極材料時,較差的電子電導率和溶解問題,制約其循環穩定性和倍率容量。本文綜述各類磷酸釩鹽及其衍生物的物相結構、合成方法、儲鋅性能和儲鋅機制,歸納提高電化學性能的方法如構建納米結構、調節電子結構、包覆導電材料、調控電解液等。最后,總結了磷酸釩鹽儲鋅正極材料現階段存在的挑戰,并對其未來的發展方向提出了展望。

     

  • 圖  1  (a) Li3V2(PO4)3的晶體結構;(b)不同電流密度下,Li3V2(PO4)3在1 mol·L?1 Zn(OTF)2+15 mol·L?1 LiTFSI電解液中的充放電曲線[34];(c) Li3V2(PO4)3@C在不同pH值電解液中0.2C循環曲線[31];(d) LiV2(PO4)3在4 mol·L?1 Zn(OTF)2電解液中2C時充放電曲線;(e) 10C長循環曲線(插圖: 2C低倍率循環曲線)[35]

    Figure  1.  (a) Crystal structure for Li3V2(PO4)3; (b) charge-discharge curves of Li3V2(PO4)3 at different current densities in 1 mol·L?1 Zn(OTF)2+15 mol·L?1 LiTFSI electrolyte[34]; (c) long-term cycles of Li3V2(PO4)3@C at 0.2C in various pH[31]; (d) charge-discharge curves of LiV2(PO4)3 in 4 mol·L?1 Zn(OTF)2 electrolyte at 2C; (e) cycling performance at 10C (Inset: the low rate of 2C)[35]

    圖  2  (a) Na3V2(PO4)3@rGO的SEM圖[40];C–rGO–Na3V2(PO4)3的(b) SEM和(c) TEM圖[42];(d) Na3V2(PO4)3@rGO在充放電過程中結構演變示意圖[40]; (e)不同電壓下的Na3V2(PO4)3,NaV2(PO4)3和ZnxNaV2(PO4)3x=0.25)物相比例[39]

    Figure  2.  (a) SEM image of Na3V2(PO4)3@rGO[40]; (b) SEM and (c) TEM images of C–rGO–Na3V2(PO4)3[42]; (d) schematic structure evolution of Na3V2(PO4)3@rGO during the charge/discharge process[40]; (e) phase fraction contributions of Na3V2(PO4)3, NaV2(PO4)3 and ZnxNaV2(PO4)3 (x=0.25) at different potential states[39]

    圖  3  (a) KVP的晶體結構圖;(b) KVP的SEM圖[30];(c) VOPO4·2H2O在WITS電解液的微分容量曲線[47];(d)在不同溫度和溶劑下合成的PA–VOP樣品的XRD圖;(e)PA–VOP原始電極片SEM圖;(f)循環300圈后PA–VOP電極片的SEM圖[45];(g)塊體-VOP和雙層-VOP在0.1 A·g–1電流密度下長循環曲線;雙層-VOP的(h)充放電曲線和層間距變化圖和(i)非原位XRD[27]

    Figure  3.  (a) Crystal structure pattern of KVP; (b) SEM image of KVP[30]; (c) differential capacity curves of VOPO4·2H2O in WITS electrolyte[47]; (d) XRD patterns of PA–VOP samples synthesized under different temperatures and solvents; (e) SEM image of PA–VOP pristine electrode; (f) SEM image of PA–VOP electrode after 300 cycles[45]; (g) cycling performance at 0.1 A·g?1 for bulk-VOP and bilayer-VOP; (h) charge–discharge curve and the d-spacing variation and (i) ex-situ XRD patterns of bilayer-VOP[27]

    圖  4  Na3V2(PO4)2F3圖. (a)晶體結構;(b)電流密度為1 A·g–1下的長循環曲線;(c)非原位XRD;(d)非原位XPS[51]

    Figure  4.  Na3V2(PO4)2F3 profiles: (a) crystal structure; (b) cycling performance at current density of 1 A·g–1; (c) ex-situ XRD; (d) ex-situ XPS[51]

    圖  5  Na3V2(PO4)2O1.6F1.4圖. (a)SEM;(b)在電解液25 mol·L?1 ZnCl2+5 mol·L?1 NH4Cl(紅)和30 mol·L?1 ZnCl2(藍)下的長循環曲線;(c)非原位XRD;(d)Zn 2p和(e)V 2p的非原位XPS[49]

    Figure  5.  Na3V2(PO4)2O1.6F1.4@rGO images: (a) SEM; (b) cycling performance in the 25 mol·L?1 ZnCl2+5 mol·L?1 NH4Cl (red) and 30 mol·L?1 ZnCl2 electrolyte (blue); (c) ex-situ XRD; ex-situ XPS of (d) Zn 2p and (e) V 2p[49]

    圖  6  C–NaVPO4F圖. (a) XRD;(b)掃速0.1 mV·s–1的CV曲線;(c)電流密度為100 mA·g–1的循環曲線;(d)非原位XRD;(e)非原位Raman[6]

    Figure  6.  C–NaVPO4F profiles: (a) XRD; (b) CV curves at 0.1 mV·s?1; (c) cycling performance at current density of 100 mA·g-1; (d) ex-situ XRD; (e) ex-situ Raman[6]

    表  1  水系鋅離子電池正極材料磷酸釩鹽的制備方法和電化學性能

    Table  1.   Preparation and performance of vanadium phosphate cathode materials for AZIB

    Materials morphologyPreparationElectrolyteSpecific capacity/
    (mA·h·g?1)
    Discharge plateaus/VCycle number, n (capacity/(mA·h·g?1),
    retention ratio, current density)
    Li3V2(PO4)3/C nanoparticles[34]Hydrothermal-assisted sol-gel1 mol·L?1 Zn(OTF)2+15 mol·L?1 LiTFSI126.7
    (200 mA·g?1)
    1.75, 1.35, 1.252000 (89.7, 82.3%, 1000 mA·g?1)
    Bulk Li3V2(PO4)3@C[31]Sol-gel1 mol·L?1 Li2SO4 + 2 mol·L?1 ZnSO4113.5
    (0.2C)
    1.45, 1.35200 (96.9, 85.4%, 0.2C)
    LiV2(PO4)3@C microspheres[35]Spray-drying4 mol·L?1 Zn(OTF)2141.0
    (2C)
    1.7, 1.24000 (118.2, 78.8%, 10C)
    Bulk Na3V2(PO4)3@C[41]Sol-gel4 mol·L?1 Zn(OTF)2120.3
    (50 mA·g?1)
    1.3, 1.051000 (75.0, 77.8%, 2000 mA·g?1)
    Na3V2(PO4)3@rGO microspheres[40]Spray-drying2 mol·L?1 Zn(OTF)2114.0
    (50 mA·g?1)
    1.26, 1.02200 (74.0, 75%, 500 mA·g?1)
    C-rGO-Na3V2(PO4)3 nanoparticles[42]Sol-gel0.5 mol·L?1 CH3COONa+
    Zn(CH3COO)2
    93.0
    (0.5C)
    1.37200 (71.6, 77%, 0.5C)
    KV2O4PO4·3.2H2O nanoparticles[30]Reflux3 mol·L?1 Zn(OTF)2228.0
    (20 mA·g?1)
    0.93, 0.593000 (118.0, 75%, 3 A·g?1)
    VOPO4·2H2O nanosheets[47]Reflux0.5 mol·L?1 Zn(ClO4)2+16 mol·L?1 NaClO4+3 mol·L?1 NaCF3SO3140.0
    (0.1 A·g?1)
    1.9, 1.7, 1.0500 (95, 95%, 1 A·g?1)
    PA?VOPO4·2H2O nanosheets[45]Reflux and
    solvothermal
    2 mol·L?1 Zn(OTF)2268.2
    (0.1 A·g?1)
    1.32000 (185.4, 92.3%, 5 A·g?1)
    Bilayer VOPO4·2H2O nanosheets[27]Liquid-exfoliation2 mol·L?1 ZnSO4313.7
    (0.1 A·g?1)
    0.9, 0.62000 (158.5, 76.8%, 5 A·g?1)
    Bulk Na3V2(PO4)2F3@C[51]Sol-gel2 mol·L?1 Zn(OTF)265.1
    (0.2 A·g?1)
    1.6, 1.254000 (46.0, 95%, 0.2 A·g?1)
    Na3V2(PO4)2O1.6F1.4@rGO nanoparticles[49]Solvothermal25 mol·L?1 ZnCl2+5 mol·L?1 NH4Cl139
    (500 mA·g?1)
    1.89, 1.477000 (61.0, 73.5%, 2 A·g?1)
    C-NaVPO4F nanoparticles[6]Sol-gel15 mol·L?1 NaClO4+1 mol·L?1 Zn(OTF)289.6
    (100 mA·g?1)
    1.31, 1.274000 (66.7, 89.3%, 1 A·g?1)
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Peng M K, Wang L, Li L B, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience, 2021, 1(1): 83 doi: 10.1016/j.esci.2021.09.004
    [2] Zhou T, Zhu L M, Xie L L, et al. Cathode materials for aqueous zinc-ion batteries: A mini review. J Colloid Interface Sci, 2022, 605: 828 doi: 10.1016/j.jcis.2021.07.138
    [3] Xu S F, Dai H C, Zhu S L, et al. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. eScience, 2021, 1(1): 60 doi: 10.1016/j.esci.2021.08.002
    [4] Dong Y, Miao L C, Ma G Q, et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem Sci, 2021, 12(16): 5843 doi: 10.1039/D0SC06734B
    [5] Su Q S, Rong Y, Chen H Z, et al. Carbon-doped vanadium nitride used as a cathode of high-performance aqueous zinc ion batteries. Ind Eng Chem Res, 2021, 60(33): 12155 doi: 10.1021/acs.iecr.1c01915
    [6] Bin D, Wang Y R, Tamirat A G, et al. Stable high-voltage aqueous zinc battery based on carbon-coated NaVPO4F cathode. ACS Sustainable Chem Eng, 2021, 9(8): 3223 doi: 10.1021/acssuschemeng.0c08651
    [7] Wang X Y, Ma L W, Zhang P C, et al. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Appl Surf Sci, 2020, 502: 144207 doi: 10.1016/j.apsusc.2019.144207
    [8] Tang B Y, Shan L T, Liang S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci, 2019, 12(11): 3288 doi: 10.1039/C9EE02526J
    [9] Wan F, Zhou X Z, Lu Y, et al. Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett, 2020, 5(11): 3569 doi: 10.1021/acsenergylett.0c02028
    [10] Heng Y L, Gu Z Y, Guo J Z, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries. Acta Phys Chimica Sin, 2021, 37(3): 17

    衡永麗, 谷振一, 郭晉芝, 等. 水系鋅離子電池用釩基正極材料的研究進展. 物理化學學報, 2021, 37(3):17
    [11] Zhai X L, Liu Y, Wang F, et al. Recent progress of vanadium-based cathode materials for rechargeable aqueous zinc-ion batteries. Chem Ind Eng, 2020, 37(5): 37

    翟小亮, 柳勇, 王飛, 等. 水基鋅離子電池釩基正極材料研究進展. 化學工業與工程, 2020, 37(5):37
    [12] Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett, 2018, 3(10): 2480 doi: 10.1021/acsenergylett.8b01426
    [13] Wan F, Niu Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed, 2019, 58(46): 16358 doi: 10.1002/anie.201903941
    [14] Li W, Jing X Y, Jiang K, et al. Observation of structural decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as cathodes for aqueous Zn-ion batteries. ACS Appl Energy Mater, 2021, 4(3): 2797 doi: 10.1021/acsaem.1c00067
    [15] Zhang N, Chen X Y, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev, 2020, 49(13): 4203 doi: 10.1039/C9CS00349E
    [16] Dong Y, Jia M, Wang Y Y, et al. Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO4 electrolyte with proton and zinc ion co-intercalation. ACS Appl Energy Mater, 2020, 3(11): 11183 doi: 10.1021/acsaem.0c02126
    [17] Lin X D, Zhou G D, Liu J P, et al. Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode. Adv Funct Mater, 2021, 31(42): 2105717 doi: 10.1002/adfm.202105717
    [18] Liu N, Li B, He Z X, et al. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J Energy Chem, 2021, 59: 134 doi: 10.1016/j.jechem.2020.10.044
    [19] Zhang N, Cheng F Y, Liu Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc, 2016, 138(39): 12894 doi: 10.1021/jacs.6b05958
    [20] Xu C W, Yang Z W, Zhang X K, et al. Prussian blue analogues in aqueous batteries and desalination batteries. Nanomicro Lett, 2021, 13(1): 166
    [21] Liu Z, Pulletikurthi G, Endres F. A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl Mater Interfaces, 2016, 8(19): 12158 doi: 10.1021/acsami.6b01592
    [22] Dai Y H, Gan Z W, Ruan Y S, et al. Research progress of aqueous zinc ion batteries and their key materials. J Chin Ceram Soc, 2021, 49(7): 1323

    戴宇航, 甘志偉, 阮雨杉, 等. 水系鋅離子電池及關鍵材料研究進展. 硅酸鹽學報, 2021, 49(7):1323
    [23] Ouyang B, Wang J Y, He T J, et al. Synthetic accessibility and stability rules of NASICONs. Nat Commun, 2021, 12: 5752 doi: 10.1038/s41467-021-26006-3
    [24] Wang M Y, Zhao X X, Guo J Z, et al. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3?x(P2O7)x cathode material. Green Energy Environ, 2022, 7(4): 763 doi: 10.1016/j.gee.2020.11.026
    [25] Liu Z X, Yang Q, Wang D H, et al. A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv Energy Mater, 2019, 9(46): 1902473 doi: 10.1002/aenm.201902473
    [26] Hu F D, Jiang X L. Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries. Inorg Chem Commun, 2021, 129: 108653 doi: 10.1016/j.inoche.2021.108653
    [27] Wu Z Y, Lu C J, Ye F, et al. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv Funct Mater, 2021, 31(45): 2106816 doi: 10.1002/adfm.202106816
    [28] Cao L S, Li D, Soto F A, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed, 2021, 60(34): 18845 doi: 10.1002/anie.202107378
    [29] Li C C, Wu W L, Shi H Y, et al. The energy storage behavior of a phosphate-based cathode material in rechargeable zinc batteries. Chem Commun, 2021, 57(51): 6253 doi: 10.1039/D1CC00584G
    [30] Yang X, Deng W Z, Chen M, et al. Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv Mater, 2020, 32(45): 2003592 doi: 10.1002/adma.202003592
    [31] Zhao H B, Hu C J, Cheng H W, et al. Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci Rep, 2016, 6: 25809 doi: 10.1038/srep25809
    [32] Duan W C, Hu Z, Zhang K, et al. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5(14): 6485 doi: 10.1039/c3nr01617j
    [33] S?rensen D R, Mathiesen J K, Ravnsb?k D B. Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes. J Power Sources, 2018, 396: 437 doi: 10.1016/j.jpowsour.2018.06.023
    [34] Li C X, Yuan W T, Li C, et al. Boosting Li3V2(PO4)3 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries. Chem Commun, 2021, 57(35): 4319 doi: 10.1039/D0CC08115A
    [35] Wang F, Hu E Y, Sun W, et al. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ Sci, 2018, 11(11): 3168 doi: 10.1039/C8EE01883A
    [36] Chen Y J, Xu Y L, Sun X F, et al. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources, 2018, 378: 423 doi: 10.1016/j.jpowsour.2017.12.073
    [37] Park M J, Yaghoobnejad Asl H, Therese S, et al. Structural impact of Zn-insertion into monoclinic V2(PO4)3: Implications for Zn-ion batteries. J Mater Chem A, 2019, 7(12): 7159 doi: 10.1039/C9TA00716D
    [38] Chen M Z, Hua W B, Xiao J, et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries. Angew Chem Int Ed, 2020, 59(6): 2449 doi: 10.1002/anie.201912964
    [39] Ko J S, Paul P P, Wan G, et al. NASICON Na3V2(PO4)3 enables quasi-two-stage Na+ and Zn2+ intercalation for multivalent zinc batteries. Chem Mater, 2020, 32(7): 3028 doi: 10.1021/acs.chemmater.0c00004
    [40] Hu P, Zhu T, Wang X P, et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy, 2019, 58: 492 doi: 10.1016/j.nanoen.2019.01.068
    [41] Heng Y L, Gu Z Y, Guo J Z, et al. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries. Energy Storage Sci Technol, 2021, 10(3): 938

    衡永麗, 谷振一, 郭晉芝, 等. Na3V2(PO4)3@C用作水系鋅離子電池正極材料的研究. 儲能科學與技術, 2021, 10(3):938
    [42] Li G L, Yang Z, Jiang Y, et al. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J Power Sources, 2016, 308: 52 doi: 10.1016/j.jpowsour.2016.01.058
    [43] Yahmed S E, Ayed M, Zid M F, et al. β-K(VO2)2(PO4). Acta Cryst, 2013, E69: i2
    [44] Xiong P, Zhang F, Zhang X Y, et al. Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat Commun, 2020, 11(1): 3297 doi: 10.1038/s41467-020-17014-w
    [45] Hu L F, Wu Z Y, Lu C J, et al. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ Sci, 2021, 14(7): 4095 doi: 10.1039/D1EE01158H
    [46] Shi H Y, Song Y, Qin Z M, et al. Inhibiting VOPO4·xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew Chem Int Ed, 2019, 58(45): 16057 doi: 10.1002/anie.201908853
    [47] Shi H Y, Wu W L, Yang X P, et al. Accessing the 2 V VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries. J Power Sources, 2021, 507: 230270 doi: 10.1016/j.jpowsour.2021.230270
    [48] Park M J, Manthiram A. Unveiling the charge storage mechanism in nonaqueous and aqueous Zn/Na3V2(PO4)2F3 batteries. ACS Appl Energy Mater, 2020, 3(5): 5015 doi: 10.1021/acsaem.0c00505
    [49] Ni Q, Jiang H, Sandstrom S, et al. A Na3V2(PO4)2O1.6F1. 4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv Funct Mater, 2020, 30(36): 2003511 doi: 10.1002/adfm.202003511
    [50] Jamesh M I, Prakash A S. Advancement of technology towards developing Na-ion batteries. J Power Sources, 2018, 378: 268 doi: 10.1016/j.jpowsour.2017.12.053
    [51] Li W, Wang K L, Cheng S J, et al. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater, 2018, 15: 14 doi: 10.1016/j.ensm.2018.03.003
    [52] Gu Z Y, Guo J Z, Cao J M, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater, 2022, 34(14): 2110108 doi: 10.1002/adma.202110108
    [53] Ling M X, Lv Z Q, Li F, et al. Revisiting of tetragonal NaVPO4F: A high energy density cathode for sodium-ion batteries. ACS Appl Mater Interfaces, 2020, 12(27): 30510 doi: 10.1021/acsami.0c08846
    [54] Jin T, Liu Y C, Li Y, et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv Energy Mater, 2017, 7(15): 1700087 doi: 10.1002/aenm.201700087
    [55] Mamoor M, Lian R Q, Wang D S, et al. Structure, charge transfer, and kinetic properties of NaVPO4F with Na+ extraction: A comprehensive first-principles study. Phys Chem Chem Phys, 2019, 21(27): 14612 doi: 10.1039/C9CP01819K
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  444
  • HTML全文瀏覽量:  281
  • PDF下載量:  74
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-19
  • 網絡出版日期:  2022-04-18
  • 刊出日期:  2023-07-25

目錄

    /

    返回文章
    返回