<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于時變局部模型的無人駕駛車輛路徑跟蹤

白國星 周蕾 孟宇 劉立 顧青 王國棟

白國星, 周蕾, 孟宇, 劉立, 顧青, 王國棟. 基于時變局部模型的無人駕駛車輛路徑跟蹤[J]. 工程科學學報, 2023, 45(5): 787-796. doi: 10.13374/j.issn2095-9389.2022.03.18.003
引用本文: 白國星, 周蕾, 孟宇, 劉立, 顧青, 王國棟. 基于時變局部模型的無人駕駛車輛路徑跟蹤[J]. 工程科學學報, 2023, 45(5): 787-796. doi: 10.13374/j.issn2095-9389.2022.03.18.003
BAI Guo-xing, ZHOU Lei, MENG Yu, LIU Li, GU Qing, WANG Guo-dong. Path tracking of unmanned vehicles based on the time-varying local model[J]. Chinese Journal of Engineering, 2023, 45(5): 787-796. doi: 10.13374/j.issn2095-9389.2022.03.18.003
Citation: BAI Guo-xing, ZHOU Lei, MENG Yu, LIU Li, GU Qing, WANG Guo-dong. Path tracking of unmanned vehicles based on the time-varying local model[J]. Chinese Journal of Engineering, 2023, 45(5): 787-796. doi: 10.13374/j.issn2095-9389.2022.03.18.003

基于時變局部模型的無人駕駛車輛路徑跟蹤

doi: 10.13374/j.issn2095-9389.2022.03.18.003
基金項目: 國家重點研發計劃資助項目(2019YFC0605300,2018YFE0192900);國家自然科學基金資助項目(52202505);中國博士后科學基金資助項目(2022M710354);中國有色金屬集團科技計劃資助項目(2018KJJH01);中央高校基本科研業務費專項資金資助項目(FRF-TP-20-052A1)
詳細信息
    通訊作者:

    E-mail: myu@ustb.edu.cn

  • 中圖分類號: U471.15

Path tracking of unmanned vehicles based on the time-varying local model

More Information
  • 摘要: 目前常用于無人駕駛車輛路徑跟蹤控制的有模型控制方法有兩類,一類是基于全局模型的控制方法,另一類是基于局部模型的控制方法。基于全局模型的路徑跟蹤控制中無人駕駛車輛的縱向速度與全局坐標系中的橫向、縱向位移誤差之間存在隨航向角變化的耦合關系,這種耦合關系使得控制器無法將縱向速度作為控制輸入來提高路徑跟蹤控制的精確性。基于局部模型的路徑跟蹤控制器通常采用誤差模型作為參考模型,這種模型使得控制器在參考路徑曲率變化幅度較大時精確性較低。針對前述問題,基于非線性模型預測控制滾動優化的原理,提出一種基于時變局部模型的無人駕駛車輛路徑跟蹤控制方法,并在低速高附著路面、低速低附著路面和高速低附著路面等工況下進行仿真驗證。在仿真結果中,相比于基于全局模型的路徑跟蹤控制器、基于局部模型的路徑跟蹤控制器以及Stanley路徑跟蹤控制器,基于時變局部模型的路徑跟蹤控制器精確性更高,其位移誤差絕對值不超過0.3342 m,航向誤差絕對值不超過0.0913 rad。

     

  • 圖  1  坐標轉換示意圖

    Figure  1.  Coordinate conversion diagram

    圖  2  車輛受力圖

    Figure  2.  Vehicle force diagram

    圖  3  低速高附著路面仿真軌跡. (a)參考路徑; (b)提出的控制器; (c)基于全局模型的控制器; (d)基于局部模型的控制器; (e)Stanley控制器; (f)無約束的Stanley控制器

    Figure  3.  Low-speed and high-adhesion road simulation trajectory: (a) reference path; (b) proposed controller; (c) controller based global model; (d) controller based on local model; (e) Stanley controller; (f) Stanley controller without constraints

    圖  4  低速高附著路面仿真位移誤差. (a) PC、GC和SC-C的位移誤差; (b) LC和SC的位移誤差

    Figure  4.  Displacement error of the low-speed and high-adhesion road simulation: (a) displacement error of PC, GC, and SC-C; (b) displacement error of LC and SC

    圖  5  低速高附著路面仿真航向誤差. (a) PC、GC和SC-C的航向誤差; (b) LC和SC的航向誤差

    Figure  5.  Heading error of the low-speed and high-adhesion road simulation: (a) heading error of PC, GC, and SC-C; (b) heading error of LC and SC

    圖  6  低速高附著路面仿真橫向速度. (a) PC、GC和LC的橫向速度; (b) SC和SC-C的橫向速度

    Figure  6.  Lateral speed of the low-speed and high-adhesion road simulation: (a) lateral speed of PC, GC, and LC; (b) lateral speed of SC and SC-C

    圖  7  低速高附著路面仿真控制器輸出前輪轉角. (a) PC、GC和LC的前輪轉角; (b) SC和SC-C的前輪轉角

    Figure  7.  Front wheel angle output by the controller of the low-speed and high-adhesion road simulation: (a) front wheel angle of PC, GC, and LC; (b) front wheel angle of SC and SC-C

    圖  8  Stanley控制器輸出的前輪轉角和執行器執行的前輪轉角

    Figure  8.  Front wheel angle output by the Stanley controller and the front wheel angle act by the actuator

    圖  9  低速高附著路面仿真控制器輸出縱向速度

    Figure  9.  Longitudinal speed output by the controller of the low-speed and high-adhesion road simulation

    圖  10  低速高附著路面仿真時間成本

    Figure  10.  Time cost of the low-speed and high-adhesion road simulation

    圖  11  低速低附著路面仿真位移誤差和航向誤差. (a)位移誤差; (b)航向誤差

    Figure  11.  Displacement and heading errors of the low-speed and low-adhesion road simulation: (a) displacement error; (b) heading error

    圖  12  低速低附著路面仿真控制器輸出前輪轉角和縱向速度. (a)前輪轉角; (b)縱向速度

    Figure  12.  Front wheel angle and longitudinal speed output by the controller of the low-speed and low-adhesion road simulation: (a) front wheel angle; (b) longitudinal speed

    圖  13  低速低附著路面仿真橫向速度

    Figure  13.  Lateral speed of the low-speed and low-adhesion road simulation

    圖  14  高速低附著路面仿真位移誤差和航向誤差. (a)位移誤差; (b)航向誤差

    Figure  14.  Displacement and heading errors of the high-speed low-adhesion road simulation: (a) displacement error; (b) heading error

    圖  15  高速低附著路面仿真控制器輸出前輪轉角和縱向速度. (a)前輪轉角; (b)縱向速度

    Figure  15.  Front wheel angle and longitudinal speed output by the controller of the high-speed low-adhesion road simulation: (a) front wheel angle; (b) longitudinal speed

    圖  16  高速低附著路面仿真橫向速度

    Figure  16.  Lateral speed of the high-speed low-adhesion road simulation

    表  1  控制器權重系數

    Table  1.   Weight coefficient of controllers

    Controllers${ {\boldsymbol{Q} }_1}$${ {\boldsymbol{Q} }_2}$${ {\boldsymbol{Q} }_3}$
    Proposed controller$\left[ {\begin{array}{*{20}{l}} 1&{}&{} \\ {}&{10}&{} \\ {}&{}&1 \end{array}} \right]$$\left[ {10} \right]$$\left[ {\begin{array}{*{20}{c}} 1&{} \\ {}&1 \end{array}} \right]$
    Controller based on the global model$\left[ {\begin{array}{*{20}{l}} {10}&{}&{} \\ {}&{10}&{} \\ {}&{}&1 \end{array}} \right]$$\left[ {10} \right]$$\left[ {\begin{array}{*{20}{c}} 1&{} \\ {}&1 \end{array}} \right]$
    Controller based on the local model$\left[ {\begin{array}{*{20}{l}} 1&{}&{} \\ {}&{10}&{} \\ {}&{}&1 \end{array}} \right]$$\left[ {10} \right]$$\left[ {\begin{array}{*{20}{c}} 1&{} \\ {}&1 \end{array}} \right]$
    下載: 導出CSV

    表  2  無人駕駛車輛模型參數

    Table  2.   Parameters of unmanned vehicle model

    SymbolValue
    $ {L_{\text{f}}} $/m1.04
    $ {L_{\text{r}}} $/m1.56
    m/kg1230
    $ {I_z} $/(kg?m?2)1343.1
    下載: 導出CSV

    表  3  魔術公式輪胎模型參數

    Table  3.   Parameters of the magic formula tire model

    SymbolValueSymbolValue
    ${a_0}$1.415${a_4}$2.688×104
    ${a_1}$?1.149×10?5${a_5}$0
    ${a_2}$1.032${a_6}$?1.236×10?7
    ${a_3}$3.423×103${a_7}$?0.1844
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Bai G X, Meng Y, Liu L, et al. Current status of path tracking control of unmanned driving vehicles. Chin J Eng, 2021, 43(4): 475

    白國星, 孟宇, 劉立, 等. 無人駕駛車輛路徑跟蹤控制研究現狀. 工程科學學報, 2021, 43(4):475
    [2] Xiong L, Yang X, Zhuo G, et al. Review on motion control of autonomous vehicles. J Mech Eng, 2020, 56(10): 127 doi: 10.3901/JME.2020.10.127

    熊璐, 楊興, 卓桂榮, 等. 無人駕駛車輛的運動控制發展現狀綜述. 機械工程學報, 2020, 56(10):127 doi: 10.3901/JME.2020.10.127
    [3] Liu J K. Sliding Mode Control Design and MATLAB Simulation (Third Edition) The Basic Theory and Design Method. Beijing: Tsinghua University Press, 2015

    劉金琨. 滑模變結構控制MATLAB仿真(第3版)基本理論與設計方法. 北京: 清華大學出版社, 2015
    [4] Kang Y T, Xue B, Zeng R Y. Self-adaptive path tracking control for mobile robots under slippage conditions based on an RBF neural network. Algorithms, 2021, 14(7): 196 doi: 10.3390/a14070196
    [5] Zhao J B, Zhu L P, Liu C Y. Research on path tracking control strategy of four-wheel steering intelligent vehicle. J Syst Simul, 2021, 33(10): 2390 doi: 10.16182/j.issn1004731x.joss.20-0572

    趙景波, 朱梁鵬, 劉成曄. 四輪轉向智能車輛路徑跟蹤控制策略研究. 系統仿真學報, 2021, 33(10):2390 doi: 10.16182/j.issn1004731x.joss.20-0572
    [6] Li D R, Wu S B, Zhao Y G, et al. A hierarchical path tracking method for high-speed unmanned tracked vehicle // 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Indianapolis, 2021: 38
    [7] Bai G X, Liu L, Meng Y, et al. Path tracking of vehicles on urban roads based on fuzzy control and NMPC//2021 China Automation Congress (CAC). Beijing, 2021: 2845
    [8] Bai G X, Meng Y, Liu L, et al. Anti‐sideslip path tracking of wheeled mobile robots based on fuzzy model predictive control. Electron Lett, 2020, 56(10): 490 doi: 10.1049/el.2019.4019
    [9] Bai G X, Liu L, Meng Y, et al. Real-time path tracking of mobile robot based on nonlinear model predictive control. Trans Chin Soc Agric Mach, 2020, 51(9): 47 doi: 10.6041/j.issn.1000-1298.2020.09.006

    白國星, 劉麗, 孟宇, 等. 基于非線性模型預測控制的移動機器人實時路徑跟蹤. 農業機械學報, 2020, 51(9):47 doi: 10.6041/j.issn.1000-1298.2020.09.006
    [10] Bai G X, Liu L, Meng Y, et al. Path tracking of wheeled mobile robots based on dynamic prediction model. IEEE Access, 2019, 7: 39690 doi: 10.1109/ACCESS.2019.2903934
    [11] Bai G X, Liu L, Meng Y, et al. Path tracking of mining vehicles based on nonlinear model predictive control. Appl Sci, 2019, 9(7): 1372 doi: 10.3390/app9071372
    [12] Tang L Q, Yan F W, Zou B, et al. An improved kinematic model predictive control for high-speed path tracking of autonomous vehicles. IEEE Access, 2020, 8: 51400 doi: 10.1109/ACCESS.2020.2980188
    [13] Deng H P, Ma B, Zhao H G, et al. Path planning and tracking control of autonomous vehicle for obstacle avoidance. Acta Armamentarii, 2020, 41(3): 585 doi: 10.3969/j.issn.1000-1093.2020.03.020

    鄧海鵬, 麻斌, 趙海光, 等. 自主駕駛車輛緊急避障的路徑規劃與軌跡跟蹤控制. 兵工學報, 2020, 41(3):585 doi: 10.3969/j.issn.1000-1093.2020.03.020
    [14] Klauer C, Schwabe M, Mobalegh H. Path tracking control for urban autonomous driving. IFAC-PapersOnLine, 2020, 53(2): 15705 doi: 10.1016/j.ifacol.2020.12.2569
    [15] Wang H R, Wang Q D, Chen W W, et al. Path tracking based on model predictive control with variable predictive horizon. Trans Inst Meas Control, 2021, 43(12): 2676 doi: 10.1177/01423312211003809
    [16] Wang Y Q, Gao S, Wang Y H, et al. Trajectory tracking and stability control of high-speed autonomous vehicle. J Zhejiang Univ (Eng Sci), 2021, 55(10): 1922 doi: 10.3785/j.issn.1008-973X.2021.10.014

    王玉瓊, 高松, 王玉海, 等. 高速無人駕駛車輛軌跡跟蹤和穩定性控制. 浙江大學學報(工學版), 2021, 55(10):1922 doi: 10.3785/j.issn.1008-973X.2021.10.014
    [17] Lin H Z, Li Y M, Yuan Z H, et al. Sliding mode anti-interference path tracking method for autonomous operation of paddy field plant protection machine. Trans Chin Soc Agric Mach, 2021, 52(9): 383 doi: 10.6041/j.issn.1000-1298.2021.09.044

    林洪振, 李彥明, 袁正華, 等. 水田植保機自主作業滑模抗干擾路徑跟蹤方法. 農業機械學報, 2021, 52(9):383 doi: 10.6041/j.issn.1000-1298.2021.09.044
    [18] Cheng S, Li L, Chen X, et al. Model-predictive-control-based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying. IEEE Trans Ind Electron, 2021, 68(9): 8698 doi: 10.1109/TIE.2020.3009585
    [19] Zhang Y X, Wang L H, Liu Y D. Adaptive neural network-based path tracking control for autonomous combine harvester with input saturation. Ind Robot Int J Robotics Res Appl, 2021, 48(4): 510
    [20] Hang P, Chen X B. Path tracking control of 4-wheel-steering autonomous ground vehicles based on linear parameter-varying system with experimental verification. Proc Inst Mech Eng Part I J Syst Control Eng, 2021, 235(3): 411
    [21] Wang G D, Liu L, Meng Y, et al. Integrated Path tracking control of steering and braking based on holistic MPC. IFAC-PapersOnLine, 2021, 54(2): 45 doi: 10.1016/j.ifacol.2021.06.007
    [22] Liu W, Wang R C, Xie C Y, et al. Investigation on adaptive preview distance path tracking control with directional error compensation. Proc Inst Mech Eng Part I J Syst Control Eng, 2020, 234(4): 484
    [23] Cai Y F, Li J, Sun X Q, et al. Research on hybrid control strategy for intelligent vehicle path tracking. China Mech Eng, 2020, 31(3): 289 doi: 10.3969/j.issn.1004-132X.2020.03.006

    蔡英鳳, 李健, 孫曉強, 等. 智能汽車路徑跟蹤混合控制策略研究. 中國機械工程, 2020, 31(3):289 doi: 10.3969/j.issn.1004-132X.2020.03.006
    [24] Meng Y, Wang Y, Gu Q, et al. LQR-GA path tracking control of articulated vehicle based on predictive information. Trans Chin Soc Agric Mach, 2018, 49(6): 375 doi: 10.6041/j.issn.1000-1298.2018.06.045

    孟宇, 汪鈺, 顧青, 等. 基于預見位姿信息的鉸接式車輛LQR-GA路徑跟蹤控制. 農業機械學報, 2018, 49(6):375 doi: 10.6041/j.issn.1000-1298.2018.06.045
    [25] Bai G X, Meng Y, Liu L, et al. Review and comparison of path tracking based on model predictive control. Electronics, 2019, 8(10): 1077 doi: 10.3390/electronics8101077
    [26] Bai G X, Zhou L, Meng Y, et al. A Method and System for Selecting Key Reference Points for Path Tracking Control Based on Prediction: China Patent, CN112859863A. 2021-05-28

    白國星, 周蕾, 孟宇, 等. 一種基于預測的路徑跟蹤控制關鍵參考點選取方法及系統: 中國專利, CN112859863A. 2021-05-28
    [27] Bai G X, Meng Y, Gu Q, et al. Improvement of vehicle path tracking by relaxing the steering angle speed limit // 2020 Chinese Automation Congress (CAC). Shanghai, 2020: 6886
  • 加載中
圖(16) / 表(3)
計量
  • 文章訪問數:  545
  • HTML全文瀏覽量:  140
  • PDF下載量:  126
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-18
  • 網絡出版日期:  2022-05-25
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回