Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft
-
摘要: 多電飛機指次級功率從機械能、液壓能、氣壓能等傳統的多能源體制統一為電能體制的飛機,具有系統結構簡單、可靠性高、可維護性高和能源利用率高等優點,其電力系統最先進的架構為360~800 Hz變頻交流電源和270 V直流電源,目前已在空客A380、波音B787、F-22等多電飛機中應用。但隨著用電功率的增加,多電飛機的配電、用電網絡以及線纜布局將變得更復雜,發生短路等電氣故障的概率明顯加大。故障電流產生的電弧不僅嚴重影響線纜和用電設備的壽命、可靠性和安全性,還將限制航空電力系統擴容和飛行性能提升。多電飛機斷路器是滅弧的關鍵器件,通過分析斷路器中電弧放電過程的復雜機理,可有助于提升其滅弧性能。為深入推進多電飛機電力系統中斷路器電弧理論與滅弧技術研究的開展,首先分析了民用和軍用多電飛機電力系統的結構以及電氣故障保護的難點,然后分別歸納了航空變頻交流斷路器和270 V直流斷路器中電弧理論與滅弧技術的研究現狀,最后預測了未來航空保護電器滅弧技術的發展趨勢。
-
關鍵詞:
- 多電飛機 /
- 航空270 V直流電力系統 /
- 變頻電力系統 /
- 航空斷路器 /
- 電弧
Abstract: A more-electric aircraft refers to an aircraft whose secondary power is unified from the traditional multi-energy, such as mechanical energy, hydraulic energy, and pneumatic energy, to the electrical energy, which has the advantages of a simple system structure, high reliability, high maintainability, and high energy efficiency. The most advanced architecture of its power system is the 360–800 Hz variable frequency AC power supply and the 270 V high-voltage DC power supply, which have been applied in the Airbus A380, Boeing B787, F-22, and other more-electric aircraft. As power consumption increases, the power distribution, power network, and cable layout in a more-electric aircraft become more complex, and the probability of electrical faults such as short circuits increases. The arc generated by fault current not only severely affects the life, reliability, and safety of cable and electrical equipment but also limits the capacity expansion of an aviation power system and the improvement of flight performance. The circuit breaker in a more-electric aircraft is a key device for arc extinguishing. Analyzing the complex mechanism of the arc-discharging process in a circuit breaker helps improve the arc-extinguishing performance. To further promote research on the arc mechanism and extinguishing technology of circuit breakers in more-electric aircraft power systems, in this paper, the structure of civilian and military more-electric aircraft power systems and the difficulties in the electrical fault and protection are first analyzed. Then, the research status of the arc-extinguishing technology of the aviation variable frequency AC circuit breaker and the 270 V high-voltage DC circuit breaker are summarized. For an intermediate-frequency vacuum arc, the instantaneous input power inside the gap and at the anode increases with the current frequency, which indicates that the half-wave input power increases with the frequency and proves that the transition state arc is an important source of anode ablation during intermediate-frequency arcing. Under the same current condition, the frequency increases. On the one hand, when the value of di/dt increases, the arc-extinguishing ability decreases with increasing frequency. On the other hand, intensifying the skin effect leads to an increase in the arc center pressure, arc contraction, and magnetic field hysteresis, which is not conducive to arc extinguishing. In addition, the metal vapor density vaporized by droplets reduces the recovery strength of the dielectric after the current zero, which is not conducive to arc extinguishing. For the 270 V DC arc, air, nitrogen, helium, hydrogen, and other gas are presently used in aviation power systems, among which hydrogen is the research hotspot. Finally, future research trends of arc extinguishing technology for aviation circuit breakers are predicted. -
表 1 典型民用多電飛機的變頻電力系統
Table 1. Variable frequency power supply system of a typical civil more-electric aircraft
Type Power of ME/(kV·A) Phase voltage /
VFrequency of ME /Hz Power of APU/(kV·A) Frequency of
APU/HzPower of RAT
/(kV·A)A320ME 4×75 115 360–800 2×120 400 2×80 A380/C919 4×150 115 360–800 2×120 400 70 B787 4×250 230 360–800 2×225 400 10 表 2 典型軍用多電飛機的直流電力系統
Table 2. 270 V DC power supply system of a typical military more-electric aircraft
Type Power of ME/kW Power of APU/kW Voltage level/V Short-circuit current/kA F-22 2 × 65 22 270 2.5 F-35 2 × 125 200 270 5 www.77susu.com -
參考文獻
[1] Sarlioglu B, Morris C T. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Trans Transp Electrification, 2015, 1(1): 54 doi: 10.1109/TTE.2015.2426499 [2] Liu Z J, Song C C, Liang J Y, et al. Advances in modeling and control of probe-drogue aerial refueling. Chin J Eng, 2021, 43(1): 150劉志杰, 宋叢叢, 梁金源, 等. 空中加油機加油軟管系統建模和控制研究進展. 工程科學學報, 2021, 43(1):150 [3] Yan Y G, Qin H H, Gong C Y, et al. More electric aircraft and power electronics. J Nanjing Univ Aeronaut &Astronaut, 2014, 46(1): 11 doi: 10.3969/j.issn.1005-2615.2014.01.002嚴仰光, 秦海鴻, 龔春英, 等. 多電飛機與電力電子. 南京航空航天大學學報, 2014, 46(1):11 doi: 10.3969/j.issn.1005-2615.2014.01.002 [4] Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512付強, 陳向陽, 鄭子亮, 等. 仿生撲翼飛行器的視覺感知系統研究進展. 工程科學學報, 2019, 41(12):1512 [5] Jiang Y, Li Q. Vacuum Circuit Breaker for Aviation Variable Frequency Power System: Theory and Application of Arc in Electrical Apparatus. Singapore: Springer Press, 2021 [6] Fan Z Y, Tan Z, Liu T. Research on fault transmission modes for electrical system of more electric aircraft. Mod Electron Tech, 2018, 41(24): 48樊智勇, 譚卓, 劉濤. 多電飛機電氣系統故障傳遞模式研究. 現代電子技術, 2018, 41(24):48 [7] He C. Research on fault location method of aircraft wire based on time-frequency reflection. Electron Test, 2018(15): 53 doi: 10.3969/j.issn.1000-8519.2018.15.021何超. 基于時域反射的飛機線路故障定位方法研究. 電子測試, 2018(15):53 doi: 10.3969/j.issn.1000-8519.2018.15.021 [8] Li Q, Hu W Y, Li J Y, et al. A survey of person re-identification based on deep learning. Chin J Eng, 2022, 44(5): 920李擎, 胡偉陽, 李江昀, 等. 基于深度學習的行人重識別方法綜述. 工程科學學報, 2022, 44(5):920 [9] Liu M L, Hu X R. Selection and analysis of protection device for civil aircraft distribution. Civ Aircr Des Res, 2008, 22(4): 21 doi: 10.3969/j.issn.1674-9804.2008.04.005劉麥玲, 胡興榮. 民用飛機配電線路保護裝置的選取分析. 民用飛機設計與研究, 2008, 22(4):21 doi: 10.3969/j.issn.1674-9804.2008.04.005 [10] Ding X, Tang G F, Han M X, et al. Design and equivalence evaluation of type test for hybrid DC circuit breaker. Power Syst Technol, 2018, 42(1): 72 doi: 10.13335/j.1000-3673.pst.2017.1293丁驍, 湯廣福, 韓民曉, 等. 混合式高壓直流斷路器型式試驗及其等效性評價. 電網技術, 2018, 42(1):72 doi: 10.13335/j.1000-3673.pst.2017.1293 [11] Wu Y, Rong M Z, Zhong J Y, et al. Medium and high voltage DC breaking technology. High Volt Eng, 2018, 44(2): 337 doi: 10.13336/j.1003-6520.hve.20180131001吳翊, 榮命哲, 鐘建英, 等. 中高壓直流開斷技術. 高電壓技術, 2018, 44(2):337 doi: 10.13336/j.1003-6520.hve.20180131001 [12] He J J, Yuan Z, Zhao W T, et al. Review of DC circuit breaker technology development. South Power Syst Technol, 2015, 9(2): 9何俊佳, 袁召, 趙文婷, 等. 直流斷路器技術發展綜述. 南方電網技術, 2015, 9(2):9 [13] Zhai G F, Bo K, Zhou X, et al. Investigation on breaking arc in DC high-power relays: A review. Trans China Electrotech Soc, 2017, 32(22): 251 doi: 10.19595/j.cnki.1000-6753.tces.160605翟國富, 薄凱, 周學, 等. 直流大功率繼電器電弧研究綜述. 電工技術學報, 2017, 32(22):251 doi: 10.19595/j.cnki.1000-6753.tces.160605 [14] Li X W. Research progress on air arc of low voltage electrical appliances. Electr &Energy Manag Technol, 2018, 22: 12李興文. 低壓電器空氣電弧的近期研究進展. 電器與能效管理技術, 2018, 22:12 [15] Muratovi? M, Kapetanovi? M, Ahmethod?i? A, et al. Nozzle ablation model: Calculation of nozzle ablation intensity and its influence on state of SF6 gas in thermal chamber // Proceedings of the IEEE International Conference on Solid Dielectrics. Bologna, 2013: 692 [16] Li K, Gao Z C, Wu Y, et al. Remaining lifetime prediction of AC contactor based on statistical regression and nonlinear Wiener process. Trans China Electrotech Soc, 2019, 34(19): 4058李奎, 高志成, 武一, 等. 基于統計回歸和非線性Wiener過程的交流接觸器剩余壽命預測. 電工技術學報, 2019, 34(19):4058 [17] Cui R H, Wang Y, Wang C Y, et al. Series arc fault identification method in aviation lines based on multi-information fusion. Trans China Electrotech Soc, 2019, 34(Suppl 1): 118崔芮華, 王洋, 王傳宇, 等. 基于多信息融合的航空線路串聯故障電弧識別方法. 電工技術學報, 2019, 34(增刊1): 118 [18] Tong Z A, Wu J W, Li K. Numerical simulation of intermediate-frequency vacuum arc. IEEE Access, 2020, 8: 143085 doi: 10.1109/ACCESS.2020.3014373 [19] Wu S X. New generation 270V DC contractor for military or aeronautics & astronautics use. Electrotech Electr, 2009, 29(11): 43 doi: 10.3969/j.issn.1007-3175.2009.11.012吳世湘. 軍事或航空航天用新一代270V直流接觸器. 電工電氣, 2009, 29(11):43 doi: 10.3969/j.issn.1007-3175.2009.11.012 [20] Xu Z H. Theoretical Basis of Electrical Appliances. Beijing: China Machine Press, 2014許志紅. 電器理論基礎. 北京: 機械工業出版社, 2014 [21] Niu C P, Ding J W, Yang F, et al. The influence of contact space on arc commutation process in air circuit breaker. Plasma Sci Technol, 2016, 18(5): 460 doi: 10.1088/1009-0630/18/5/02 [22] Wang J H, Geng Y S, Liu Z Y, et al. High voltage level vacuum switching technology. High Volt Apparatus, 2017, 53(3): 1 doi: 10.13296/j.1001-1609.hva.2017.03.001王建華, 耿英三, 劉志遠, 等. 高電壓等級真空開斷技術. 高壓電器, 2017, 53(3):1 doi: 10.13296/j.1001-1609.hva.2017.03.001 [23] Zong T Y, Li Z B, W J, et al. Experimental study on electrical contact performance under different pairing. Electr Eng Mater, 2017(6): 3 doi: 10.16786/j.cnki.1671-8887.eem.2017.06.001宗天元, 李震彪, 魏江, 等. 非對稱配對觸頭材料的電性能試驗研究. 電工材料, 2017(6):3 doi: 10.16786/j.cnki.1671-8887.eem.2017.06.001 [24] Rich J A, Farrall G A. Vacuum arc recovery phenomena. Proc IEEE, 1964, 52(11): 1293 doi: 10.1109/PROC.1964.3365 [25] Jenkins J E, Sherman J C, Webster R, et al. Measurement of the neutral vapour density decay following the extinction of a high-current vacuum arc between copper electrodes. J Physics D Applied Physics, 1975, 8(12): L139 doi: 10.1088/0022-3727/8/12/003 [26] Wang L J, Huang X L, Zhang X, et al. Modeling and simulation of high-current vacuum arc considering the micro process of anode vapor. J Phys D Appl Phys, 2017, 50(9): 095203 doi: 10.1088/1361-6463/aa5620 [27] Jia S L, Yang D G, Wang L J, et al. Investigation of the swirl flow on anode surface in high-current vacuum arcs. J Appl Phys, 2012, 111(4): 043301 doi: 10.1063/1.3684974 [28] Miller H C. Anode modes in vacuum arcs: Update. IEEE Trans Plasma Sci, 2017, 45(8): 2366 doi: 10.1109/TPS.2017.2708695 [29] Zalucki Z, Janiszewski J. Transition from constricted to diffuse vacuum arc modes during high AC current interruption. IEEE Trans Plasma Sci, 1999, 27(4): 991 doi: 10.1109/27.782271 [30] Matsui Y, Sano A, Komatsu H, et al. Vacuum arc phenomena under various axial magnetic field and anode melting // Proceedings of the 24th International Symposium on Discharges and Electrical Insulation in Vacuum. Braunschweig, 2010: 324 [31] Liu Z X, Xiu S X, Wang X, et al. The characteristics of vacuum arc in the process of transition to diffuse mode under transverse magnetic field. IEEE Trans Plasma Sci, 2019, 47(8): 3554 doi: 10.1109/TPS.2019.2915817 [32] Ma H, Zhang Z Q, Liu Z Y, et al. Effect of six pure metals cathode on constricted characteristics of high-current vacuum arcs subject to axial magnetic field. J Phys D:Appl Phys, 2019, 52(26): 265201 doi: 10.1088/1361-6463/ab16b1 [33] Wang L J, Wang Y, Huang X L, et al. Experiments and simulation studies on anode erosion process in vacuum arc under axial magnetic field: A review. High Volt Eng, 2019, 45(7): 2343 doi: 10.13336/j.1003-6520.hve.20190628020王立軍, 王淵, 黃小龍, 等. 縱向磁場下真空電弧中陽極燒蝕過程的實驗及仿真研究綜述. 高電壓技術, 2019, 45(7):2343 doi: 10.13336/j.1003-6520.hve.20190628020 [34] Liu L H, Zhuang J W, Xu G S, et al. The characteristics of vacuum arc in the process of DC interruption using butt contacts and TMF contacts. IEEE Trans Plasma Sci, 2014, 42(6): 1736 doi: 10.1109/TPS.2014.2320574 [35] Ge G W, Cheng X, Su K, et al. Investigation on the magnetic arc control of multi-break VCBs // Proceedings of 28th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, 2018: 287 [36] Mo Y P, Shi Z Q, Jia S L, et al. Experimental investigation on the postarc current in vacuum circuit breakers and the influence of arcing memory effect. IEEE Trans Plasma Sci, 2019, 47(8): 3508 doi: 10.1109/TPS.2019.2926762 [37] Li S M, Geng Y S, Liu Z Y, et al. Discharge and breakdown mechanism transition in the conditioning process between plane-plane copper electrodes in vacuum. IEEE Trans Dielectr Electr Insul, 2019, 26(2): 539 doi: 10.1109/TDEI.2018.007505 [38] Wang J, Wu J W, Zhu L Y. Properties of intermediate-frequency vacuum arc under axial magnetic field. IEEE Trans Plasma Sci, 2009, 37(8): 1477 doi: 10.1109/TPS.2009.2024748 [39] Wang J, Wu J W, Zhu L Y. Arc behavior of intermediate-frequency vacuum arc on axial magnetic field contacts. IEEE Trans Plasma Sci, 2011, 39(6): 1336 doi: 10.1109/TPS.2011.2119496 [40] Jiang Y, Wu J W, Ma S L, et al. Appearance of vacuum arcs in axial magnetic field and butt contacts at intermediate frequencies. IEEE Trans Plasma Sci, 2019, 47(2): 1405 doi: 10.1109/TPS.2019.2892513 [41] Ding C, Yuan Z, He J J. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber. Jpn J Appl Phys, 2017, 56(10): 106001 doi: 10.7567/JJAP.56.106001 [42] Peng Z D, Yang C G, Li B, et al. Analysis and test of the high current forced commutation interruption characteristics for a DC vacuum circuit breaker. High Volt Eng, 2020, 46(2): 603 doi: 10.13336/j.1003-6520.hve.20200131026彭振東, 楊晨光, 李博, 等. 直流真空斷路器大電流強迫換流分斷特性分析與驗證. 高電壓技術, 2020, 46(2):603 doi: 10.13336/j.1003-6520.hve.20200131026 [43] Chen Z Q, Duan X Y, Liao M F, et al. Influences of arc parameters on the repeated interruption performances of laser triggered vacuum switch. Trans China Electrotech Soc, 2019, 34(21): 4501 doi: 10.19595/j.cnki.1000-6753.tces.181359陳占清, 段雄英, 廖敏夫, 等. 電弧參數對激光觸發真空開關重頻開斷特性的影響. 電工技術學報, 2019, 34(21):4501 doi: 10.19595/j.cnki.1000-6753.tces.181359 [44] Jiang Y, Wu J W, Jia B W. Reignition after interruption of intermediate-frequency vacuum arc in aircraft power system. IEEE Access, 2020, 6: 8649 [45] Jiang Y, Wu J W, Li Q, et al. Influence of metal vapor on post-arc breakdown for intermediate frequency vacuum arc. Vacuum, 2021, 193: 110551 doi: 10.1016/j.vacuum.2021.110551 [46] Ishikawa M, Ikeda H, Yanabu S, et al. Numerical study of delayed-zero-current interruption phenomena using transient analysis model for an ARC in SF6 flow. IEEE Power Eng Rev, 1984, 4(12): 40 [47] Zang C Y. Research on Static-State Arc Plasma Ionizations and Arc Characteristics for Aerospace Relays [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2006臧春艷. 航天繼電器穩態電弧等離子體電離過程與電弧特性研究[學位論文]. 武漢: 華中科技大學, 2006 [48] Zhou X. Simulation and Experiment Research on Electrical Arc and Its Extinguishing Methods in Aerospace Relay [Dissertation]. Harbin: Harbin Institute of Technology, 2011周學. 航天繼電器分斷電弧及其抑制措施的仿真和實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2011 [49] Zhou X, Cui X L, Chen M, et al. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasma mixed with silver vapor. Plasma Sci Technol, 2016, 18(5): 560 doi: 10.1088/1009-0630/18/5/20 [50] Xin C, Wu J W, Liu B. Investigation of DC arc in hydrogen and air // Proceedings of the 2nd International Conference on Electric Power Equipment - Switching Technology. Matsue, 2013: 1 [51] Xin C, Wu J W, Liu B, et al. Plasma characteristics of DC hydrogen-nitrogen mixed gas arc under high pressure. IEEE Trans Plasma Sci, 2014, 42(10): 2722 doi: 10.1109/TPS.2014.2340432 [52] Xin C, Wu J W. Experimental study on the breaking process of DC hydrogen-nitrogen mixed gas arc. Trans China Electrotech Soc, 2015, 30(13): 117 doi: 10.3969/j.issn.1000-6753.2015.13.016辛超, 武建文. 直流氫氣-氮氣混合氣體電弧開斷過程實驗研究. 電工技術學報, 2015, 30(13):117 doi: 10.3969/j.issn.1000-6753.2015.13.016 [53] Zhai G F, Bo K, Chen M, et al. Investigation on plasma jet flow phenomena during DC air arc motion in bridge-type contacts. Plasma Sci Technol, 2016, 18(5): 485 doi: 10.1088/1009-0630/18/5/07 [54] Li Z P. Research on the Technology of Arc Suppression of 270V Aviation DC Circuit Breaker [Dissertation]. Tianjin: Hebei University of Technology, 2015李振平. 270V航空直流斷路器滅弧技術的研究[學位論文]. 天津: 河北工業大學, 2015 [55] Li C. Research on Breaking Arc Restraining Factors of Bridge-Type Contact under 270V and DC [Dissertation]. Tianjin: Hebei University of Technology, 2016李超. 270V橋式觸點直流分斷電弧抑制因素的實驗研究 [學位論文]. 天津: 河北工業大學, 2016 [56] Jia B W, Wu J W, Kong G W, et al. Arc motion characteristics of H2-N2 mixed gas switch with magnetic field // Proceedings of the 4th International Conference on Electric Power Equipment - Switching Technology. Xi’an, 2017: 268 [57] Xu Z, Xiao H Q, Xu Y Z. Study on basic principle and its realization methods for DC circuit breakers. High Volt Eng, 2018, 44(2): 347 doi: 10.13336/j.1003-6520.hve.20180131002徐政, 肖晃慶, 徐雨哲. 直流斷路器的基本原理和實現方法研究. 高電壓技術, 2018, 44(2):347 doi: 10.13336/j.1003-6520.hve.20180131002 [58] Song X C, Shi Z Q, Liu C, et al. Experimental investigation on the characteristics of drawn vacuum arc in initial expanding stage and in forced current-zero stage. IEEE Trans Plasma Sci, 2011, 39(6): 1330 doi: 10.1109/TPS.2011.2131688 [59] Liu B, Wu J W, Xin C. Study on dynamic characteristic in force interrupted DC vacuum arc. IEEE Trans Plasma Sci, 2014, 42(10): 2382 doi: 10.1109/TPS.2014.2334639 [60] Liu B, Wu J W, Xin C, et al. Research on the reignition condition for DC arc forcing interruption // Proceedings of the 25th International Symposium on Discharges and Electrical Insulation in Vacuum. Tomsk, 2012: 169 [61] Liu L H, Zhuang J W, Wang C, et al. A hybrid DC vacuum circuit breaker for medium voltage: Principle and first measurements. IEEE Trans Power Deliv, 2015, 30(5): 2096 doi: 10.1109/TPWRD.2014.2384023 [62] Liu W, Ma H C, Zhang H T, et al. Development of solid hybrid DC circuit breaker for DC distribution network. South Power Syst Technol, 2016, 10(4): 37 doi: 10.13648/j.cnki.issn1674-0629.2016.04.006劉偉, 馬海超, 張海濤, 等. 配電網用全固態混合式直流斷路器研發. 南方電網技術, 2016, 10(4):37 doi: 10.13648/j.cnki.issn1674-0629.2016.04.006 [63] Meng K. Research on 270V DC Solid-State Power Controller [Dissertation]. Xi’an: Xidian University, 2019蒙凱. 270V直流固態功率控制器研究 [學位論文]. 西安: 西安電子科技大學, 2019 [64] Huo W L, Wu J W, Li D G, et al. Interruption transient characteristics and experimental research of aero 270V DC hybrid breaker. Proc CSEE, 2017, 37(4): 1062 doi: 10.13334/j.0258-8013.pcsee.161301霍文磊, 武建文, 李德閣, 等. 航空270V混合式斷路器分斷瞬態特性及實驗研究. 中國電機工程學報, 2017, 37(4):1062 doi: 10.13334/j.0258-8013.pcsee.161301 -