<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

多電飛機斷路器電弧機理及滅弧技術研究綜述

蔣原 李擎 苗磊 呂萌 武建文 陳明軒

蔣原, 李擎, 苗磊, 呂萌, 武建文, 陳明軒. 多電飛機斷路器電弧機理及滅弧技術研究綜述[J]. 工程科學學報, 2023, 45(4): 611-620. doi: 10.13374/j.issn2095-9389.2022.02.28.002
引用本文: 蔣原, 李擎, 苗磊, 呂萌, 武建文, 陳明軒. 多電飛機斷路器電弧機理及滅弧技術研究綜述[J]. 工程科學學報, 2023, 45(4): 611-620. doi: 10.13374/j.issn2095-9389.2022.02.28.002
JIANG Yuan, LI Qing, MIAO Lei, Lü Meng, WU Jian-wen, CHEN Ming-xuan. Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft[J]. Chinese Journal of Engineering, 2023, 45(4): 611-620. doi: 10.13374/j.issn2095-9389.2022.02.28.002
Citation: JIANG Yuan, LI Qing, MIAO Lei, Lü Meng, WU Jian-wen, CHEN Ming-xuan. Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft[J]. Chinese Journal of Engineering, 2023, 45(4): 611-620. doi: 10.13374/j.issn2095-9389.2022.02.28.002

多電飛機斷路器電弧機理及滅弧技術研究綜述

doi: 10.13374/j.issn2095-9389.2022.02.28.002
基金項目: 國家自然科學基金面上資助項目(52177127);廣東省基礎與應用基礎研究基金資助項目(2020A1515110725);航空科學基金資助項目(2020Z025074001);中央高校基本科研業務費專項資金資助項目(FRF-TP-19-035A1)
詳細信息
    通訊作者:

    E-mail: liqing@ies.ustb.edu.cn

  • 中圖分類號: TM56

Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft

More Information
  • 摘要: 多電飛機指次級功率從機械能、液壓能、氣壓能等傳統的多能源體制統一為電能體制的飛機,具有系統結構簡單、可靠性高、可維護性高和能源利用率高等優點,其電力系統最先進的架構為360~800 Hz變頻交流電源和270 V直流電源,目前已在空客A380、波音B787、F-22等多電飛機中應用。但隨著用電功率的增加,多電飛機的配電、用電網絡以及線纜布局將變得更復雜,發生短路等電氣故障的概率明顯加大。故障電流產生的電弧不僅嚴重影響線纜和用電設備的壽命、可靠性和安全性,還將限制航空電力系統擴容和飛行性能提升。多電飛機斷路器是滅弧的關鍵器件,通過分析斷路器中電弧放電過程的復雜機理,可有助于提升其滅弧性能。為深入推進多電飛機電力系統中斷路器電弧理論與滅弧技術研究的開展,首先分析了民用和軍用多電飛機電力系統的結構以及電氣故障保護的難點,然后分別歸納了航空變頻交流斷路器和270 V直流斷路器中電弧理論與滅弧技術的研究現狀,最后預測了未來航空保護電器滅弧技術的發展趨勢。

     

  • 圖  1  多電飛機的電力系統結構

    Figure  1.  Electrical power system of a more-electric aircraft

    圖  2  B787飛機的電氣結構

    Figure  2.  Electrical power structure of the B787

    圖  3  電弧的危害. (a) 電弧帶來火災隱患; (b) 電弧燒蝕斷路器觸頭表面

    Figure  3.  Arc hazard: (a) fire hazards by arc; (b) ablated contact surface of circuit breaker by arc

    圖  4  中頻真空電弧的磁場仿真計算. (a) 中頻真空電弧區域的磁場分布; (b) 開距中間平面的磁場分布

    Figure  4.  Magnetic field simulation of an intermediate-frequency vacuum arc: (a) magnetic field distribution in the intermediate-frequency vacuum arc region; (b) magnetic field distribution in the middle plane

    圖  5  中頻弧后擊穿過程中的金屬液滴噴射現象

    Figure  5.  Metal droplet jetting during post-arc breakdown at intermediate frequency

    圖  6  一種自然換流混合式斷路器. (a) 斷路器結構; (b) 滅弧過程的仿真

    Figure  6.  Hybrid circuit breaker with natural commutation: (a) structure of the circuit breaker; (b) simulation of the arc-extinguishing process

    表  1  典型民用多電飛機的變頻電力系統

    Table  1.   Variable frequency power supply system of a typical civil more-electric aircraft

    TypePower of ME/(kV·A)Phase voltage /
    V
    Frequency of ME /HzPower of APU/(kV·A)Frequency of
    APU/Hz
    Power of RAT
    /(kV·A)
    A320ME4×75115360–8002×1204002×80
    A380/C9194×150115360–8002×12040070
    B7874×250230360–8002×22540010
    下載: 導出CSV

    表  2  典型軍用多電飛機的直流電力系統

    Table  2.   270 V DC power supply system of a typical military more-electric aircraft

    TypePower of ME/kWPower of APU/kWVoltage level/VShort-circuit current/kA
    F-222 × 65222702.5
    F-352 × 1252002705
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Sarlioglu B, Morris C T. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Trans Transp Electrification, 2015, 1(1): 54 doi: 10.1109/TTE.2015.2426499
    [2] Liu Z J, Song C C, Liang J Y, et al. Advances in modeling and control of probe-drogue aerial refueling. Chin J Eng, 2021, 43(1): 150

    劉志杰, 宋叢叢, 梁金源, 等. 空中加油機加油軟管系統建模和控制研究進展. 工程科學學報, 2021, 43(1):150
    [3] Yan Y G, Qin H H, Gong C Y, et al. More electric aircraft and power electronics. J Nanjing Univ Aeronaut &Astronaut, 2014, 46(1): 11 doi: 10.3969/j.issn.1005-2615.2014.01.002

    嚴仰光, 秦海鴻, 龔春英, 等. 多電飛機與電力電子. 南京航空航天大學學報, 2014, 46(1):11 doi: 10.3969/j.issn.1005-2615.2014.01.002
    [4] Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512

    付強, 陳向陽, 鄭子亮, 等. 仿生撲翼飛行器的視覺感知系統研究進展. 工程科學學報, 2019, 41(12):1512
    [5] Jiang Y, Li Q. Vacuum Circuit Breaker for Aviation Variable Frequency Power System: Theory and Application of Arc in Electrical Apparatus. Singapore: Springer Press, 2021
    [6] Fan Z Y, Tan Z, Liu T. Research on fault transmission modes for electrical system of more electric aircraft. Mod Electron Tech, 2018, 41(24): 48

    樊智勇, 譚卓, 劉濤. 多電飛機電氣系統故障傳遞模式研究. 現代電子技術, 2018, 41(24):48
    [7] He C. Research on fault location method of aircraft wire based on time-frequency reflection. Electron Test, 2018(15): 53 doi: 10.3969/j.issn.1000-8519.2018.15.021

    何超. 基于時域反射的飛機線路故障定位方法研究. 電子測試, 2018(15):53 doi: 10.3969/j.issn.1000-8519.2018.15.021
    [8] Li Q, Hu W Y, Li J Y, et al. A survey of person re-identification based on deep learning. Chin J Eng, 2022, 44(5): 920

    李擎, 胡偉陽, 李江昀, 等. 基于深度學習的行人重識別方法綜述. 工程科學學報, 2022, 44(5):920
    [9] Liu M L, Hu X R. Selection and analysis of protection device for civil aircraft distribution. Civ Aircr Des Res, 2008, 22(4): 21 doi: 10.3969/j.issn.1674-9804.2008.04.005

    劉麥玲, 胡興榮. 民用飛機配電線路保護裝置的選取分析. 民用飛機設計與研究, 2008, 22(4):21 doi: 10.3969/j.issn.1674-9804.2008.04.005
    [10] Ding X, Tang G F, Han M X, et al. Design and equivalence evaluation of type test for hybrid DC circuit breaker. Power Syst Technol, 2018, 42(1): 72 doi: 10.13335/j.1000-3673.pst.2017.1293

    丁驍, 湯廣福, 韓民曉, 等. 混合式高壓直流斷路器型式試驗及其等效性評價. 電網技術, 2018, 42(1):72 doi: 10.13335/j.1000-3673.pst.2017.1293
    [11] Wu Y, Rong M Z, Zhong J Y, et al. Medium and high voltage DC breaking technology. High Volt Eng, 2018, 44(2): 337 doi: 10.13336/j.1003-6520.hve.20180131001

    吳翊, 榮命哲, 鐘建英, 等. 中高壓直流開斷技術. 高電壓技術, 2018, 44(2):337 doi: 10.13336/j.1003-6520.hve.20180131001
    [12] He J J, Yuan Z, Zhao W T, et al. Review of DC circuit breaker technology development. South Power Syst Technol, 2015, 9(2): 9

    何俊佳, 袁召, 趙文婷, 等. 直流斷路器技術發展綜述. 南方電網技術, 2015, 9(2):9
    [13] Zhai G F, Bo K, Zhou X, et al. Investigation on breaking arc in DC high-power relays: A review. Trans China Electrotech Soc, 2017, 32(22): 251 doi: 10.19595/j.cnki.1000-6753.tces.160605

    翟國富, 薄凱, 周學, 等. 直流大功率繼電器電弧研究綜述. 電工技術學報, 2017, 32(22):251 doi: 10.19595/j.cnki.1000-6753.tces.160605
    [14] Li X W. Research progress on air arc of low voltage electrical appliances. Electr &Energy Manag Technol, 2018, 22: 12

    李興文. 低壓電器空氣電弧的近期研究進展. 電器與能效管理技術, 2018, 22:12
    [15] Muratovi? M, Kapetanovi? M, Ahmethod?i? A, et al. Nozzle ablation model: Calculation of nozzle ablation intensity and its influence on state of SF6 gas in thermal chamber // Proceedings of the IEEE International Conference on Solid Dielectrics. Bologna, 2013: 692
    [16] Li K, Gao Z C, Wu Y, et al. Remaining lifetime prediction of AC contactor based on statistical regression and nonlinear Wiener process. Trans China Electrotech Soc, 2019, 34(19): 4058

    李奎, 高志成, 武一, 等. 基于統計回歸和非線性Wiener過程的交流接觸器剩余壽命預測. 電工技術學報, 2019, 34(19):4058
    [17] Cui R H, Wang Y, Wang C Y, et al. Series arc fault identification method in aviation lines based on multi-information fusion. Trans China Electrotech Soc, 2019, 34(Suppl 1): 118

    崔芮華, 王洋, 王傳宇, 等. 基于多信息融合的航空線路串聯故障電弧識別方法. 電工技術學報, 2019, 34(增刊1): 118
    [18] Tong Z A, Wu J W, Li K. Numerical simulation of intermediate-frequency vacuum arc. IEEE Access, 2020, 8: 143085 doi: 10.1109/ACCESS.2020.3014373
    [19] Wu S X. New generation 270V DC contractor for military or aeronautics & astronautics use. Electrotech Electr, 2009, 29(11): 43 doi: 10.3969/j.issn.1007-3175.2009.11.012

    吳世湘. 軍事或航空航天用新一代270V直流接觸器. 電工電氣, 2009, 29(11):43 doi: 10.3969/j.issn.1007-3175.2009.11.012
    [20] Xu Z H. Theoretical Basis of Electrical Appliances. Beijing: China Machine Press, 2014

    許志紅. 電器理論基礎. 北京: 機械工業出版社, 2014
    [21] Niu C P, Ding J W, Yang F, et al. The influence of contact space on arc commutation process in air circuit breaker. Plasma Sci Technol, 2016, 18(5): 460 doi: 10.1088/1009-0630/18/5/02
    [22] Wang J H, Geng Y S, Liu Z Y, et al. High voltage level vacuum switching technology. High Volt Apparatus, 2017, 53(3): 1 doi: 10.13296/j.1001-1609.hva.2017.03.001

    王建華, 耿英三, 劉志遠, 等. 高電壓等級真空開斷技術. 高壓電器, 2017, 53(3):1 doi: 10.13296/j.1001-1609.hva.2017.03.001
    [23] Zong T Y, Li Z B, W J, et al. Experimental study on electrical contact performance under different pairing. Electr Eng Mater, 2017(6): 3 doi: 10.16786/j.cnki.1671-8887.eem.2017.06.001

    宗天元, 李震彪, 魏江, 等. 非對稱配對觸頭材料的電性能試驗研究. 電工材料, 2017(6):3 doi: 10.16786/j.cnki.1671-8887.eem.2017.06.001
    [24] Rich J A, Farrall G A. Vacuum arc recovery phenomena. Proc IEEE, 1964, 52(11): 1293 doi: 10.1109/PROC.1964.3365
    [25] Jenkins J E, Sherman J C, Webster R, et al. Measurement of the neutral vapour density decay following the extinction of a high-current vacuum arc between copper electrodes. J Physics D Applied Physics, 1975, 8(12): L139 doi: 10.1088/0022-3727/8/12/003
    [26] Wang L J, Huang X L, Zhang X, et al. Modeling and simulation of high-current vacuum arc considering the micro process of anode vapor. J Phys D Appl Phys, 2017, 50(9): 095203 doi: 10.1088/1361-6463/aa5620
    [27] Jia S L, Yang D G, Wang L J, et al. Investigation of the swirl flow on anode surface in high-current vacuum arcs. J Appl Phys, 2012, 111(4): 043301 doi: 10.1063/1.3684974
    [28] Miller H C. Anode modes in vacuum arcs: Update. IEEE Trans Plasma Sci, 2017, 45(8): 2366 doi: 10.1109/TPS.2017.2708695
    [29] Zalucki Z, Janiszewski J. Transition from constricted to diffuse vacuum arc modes during high AC current interruption. IEEE Trans Plasma Sci, 1999, 27(4): 991 doi: 10.1109/27.782271
    [30] Matsui Y, Sano A, Komatsu H, et al. Vacuum arc phenomena under various axial magnetic field and anode melting // Proceedings of the 24th International Symposium on Discharges and Electrical Insulation in Vacuum. Braunschweig, 2010: 324
    [31] Liu Z X, Xiu S X, Wang X, et al. The characteristics of vacuum arc in the process of transition to diffuse mode under transverse magnetic field. IEEE Trans Plasma Sci, 2019, 47(8): 3554 doi: 10.1109/TPS.2019.2915817
    [32] Ma H, Zhang Z Q, Liu Z Y, et al. Effect of six pure metals cathode on constricted characteristics of high-current vacuum arcs subject to axial magnetic field. J Phys D:Appl Phys, 2019, 52(26): 265201 doi: 10.1088/1361-6463/ab16b1
    [33] Wang L J, Wang Y, Huang X L, et al. Experiments and simulation studies on anode erosion process in vacuum arc under axial magnetic field: A review. High Volt Eng, 2019, 45(7): 2343 doi: 10.13336/j.1003-6520.hve.20190628020

    王立軍, 王淵, 黃小龍, 等. 縱向磁場下真空電弧中陽極燒蝕過程的實驗及仿真研究綜述. 高電壓技術, 2019, 45(7):2343 doi: 10.13336/j.1003-6520.hve.20190628020
    [34] Liu L H, Zhuang J W, Xu G S, et al. The characteristics of vacuum arc in the process of DC interruption using butt contacts and TMF contacts. IEEE Trans Plasma Sci, 2014, 42(6): 1736 doi: 10.1109/TPS.2014.2320574
    [35] Ge G W, Cheng X, Su K, et al. Investigation on the magnetic arc control of multi-break VCBs // Proceedings of 28th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, 2018: 287
    [36] Mo Y P, Shi Z Q, Jia S L, et al. Experimental investigation on the postarc current in vacuum circuit breakers and the influence of arcing memory effect. IEEE Trans Plasma Sci, 2019, 47(8): 3508 doi: 10.1109/TPS.2019.2926762
    [37] Li S M, Geng Y S, Liu Z Y, et al. Discharge and breakdown mechanism transition in the conditioning process between plane-plane copper electrodes in vacuum. IEEE Trans Dielectr Electr Insul, 2019, 26(2): 539 doi: 10.1109/TDEI.2018.007505
    [38] Wang J, Wu J W, Zhu L Y. Properties of intermediate-frequency vacuum arc under axial magnetic field. IEEE Trans Plasma Sci, 2009, 37(8): 1477 doi: 10.1109/TPS.2009.2024748
    [39] Wang J, Wu J W, Zhu L Y. Arc behavior of intermediate-frequency vacuum arc on axial magnetic field contacts. IEEE Trans Plasma Sci, 2011, 39(6): 1336 doi: 10.1109/TPS.2011.2119496
    [40] Jiang Y, Wu J W, Ma S L, et al. Appearance of vacuum arcs in axial magnetic field and butt contacts at intermediate frequencies. IEEE Trans Plasma Sci, 2019, 47(2): 1405 doi: 10.1109/TPS.2019.2892513
    [41] Ding C, Yuan Z, He J J. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber. Jpn J Appl Phys, 2017, 56(10): 106001 doi: 10.7567/JJAP.56.106001
    [42] Peng Z D, Yang C G, Li B, et al. Analysis and test of the high current forced commutation interruption characteristics for a DC vacuum circuit breaker. High Volt Eng, 2020, 46(2): 603 doi: 10.13336/j.1003-6520.hve.20200131026

    彭振東, 楊晨光, 李博, 等. 直流真空斷路器大電流強迫換流分斷特性分析與驗證. 高電壓技術, 2020, 46(2):603 doi: 10.13336/j.1003-6520.hve.20200131026
    [43] Chen Z Q, Duan X Y, Liao M F, et al. Influences of arc parameters on the repeated interruption performances of laser triggered vacuum switch. Trans China Electrotech Soc, 2019, 34(21): 4501 doi: 10.19595/j.cnki.1000-6753.tces.181359

    陳占清, 段雄英, 廖敏夫, 等. 電弧參數對激光觸發真空開關重頻開斷特性的影響. 電工技術學報, 2019, 34(21):4501 doi: 10.19595/j.cnki.1000-6753.tces.181359
    [44] Jiang Y, Wu J W, Jia B W. Reignition after interruption of intermediate-frequency vacuum arc in aircraft power system. IEEE Access, 2020, 6: 8649
    [45] Jiang Y, Wu J W, Li Q, et al. Influence of metal vapor on post-arc breakdown for intermediate frequency vacuum arc. Vacuum, 2021, 193: 110551 doi: 10.1016/j.vacuum.2021.110551
    [46] Ishikawa M, Ikeda H, Yanabu S, et al. Numerical study of delayed-zero-current interruption phenomena using transient analysis model for an ARC in SF6 flow. IEEE Power Eng Rev, 1984, 4(12): 40
    [47] Zang C Y. Research on Static-State Arc Plasma Ionizations and Arc Characteristics for Aerospace Relays [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2006

    臧春艷. 航天繼電器穩態電弧等離子體電離過程與電弧特性研究[學位論文]. 武漢: 華中科技大學, 2006
    [48] Zhou X. Simulation and Experiment Research on Electrical Arc and Its Extinguishing Methods in Aerospace Relay [Dissertation]. Harbin: Harbin Institute of Technology, 2011

    周學. 航天繼電器分斷電弧及其抑制措施的仿真和實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2011
    [49] Zhou X, Cui X L, Chen M, et al. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasma mixed with silver vapor. Plasma Sci Technol, 2016, 18(5): 560 doi: 10.1088/1009-0630/18/5/20
    [50] Xin C, Wu J W, Liu B. Investigation of DC arc in hydrogen and air // Proceedings of the 2nd International Conference on Electric Power Equipment - Switching Technology. Matsue, 2013: 1
    [51] Xin C, Wu J W, Liu B, et al. Plasma characteristics of DC hydrogen-nitrogen mixed gas arc under high pressure. IEEE Trans Plasma Sci, 2014, 42(10): 2722 doi: 10.1109/TPS.2014.2340432
    [52] Xin C, Wu J W. Experimental study on the breaking process of DC hydrogen-nitrogen mixed gas arc. Trans China Electrotech Soc, 2015, 30(13): 117 doi: 10.3969/j.issn.1000-6753.2015.13.016

    辛超, 武建文. 直流氫氣-氮氣混合氣體電弧開斷過程實驗研究. 電工技術學報, 2015, 30(13):117 doi: 10.3969/j.issn.1000-6753.2015.13.016
    [53] Zhai G F, Bo K, Chen M, et al. Investigation on plasma jet flow phenomena during DC air arc motion in bridge-type contacts. Plasma Sci Technol, 2016, 18(5): 485 doi: 10.1088/1009-0630/18/5/07
    [54] Li Z P. Research on the Technology of Arc Suppression of 270V Aviation DC Circuit Breaker [Dissertation]. Tianjin: Hebei University of Technology, 2015

    李振平. 270V航空直流斷路器滅弧技術的研究[學位論文]. 天津: 河北工業大學, 2015
    [55] Li C. Research on Breaking Arc Restraining Factors of Bridge-Type Contact under 270V and DC [Dissertation]. Tianjin: Hebei University of Technology, 2016

    李超. 270V橋式觸點直流分斷電弧抑制因素的實驗研究 [學位論文]. 天津: 河北工業大學, 2016
    [56] Jia B W, Wu J W, Kong G W, et al. Arc motion characteristics of H2-N2 mixed gas switch with magnetic field // Proceedings of the 4th International Conference on Electric Power Equipment - Switching Technology. Xi’an, 2017: 268
    [57] Xu Z, Xiao H Q, Xu Y Z. Study on basic principle and its realization methods for DC circuit breakers. High Volt Eng, 2018, 44(2): 347 doi: 10.13336/j.1003-6520.hve.20180131002

    徐政, 肖晃慶, 徐雨哲. 直流斷路器的基本原理和實現方法研究. 高電壓技術, 2018, 44(2):347 doi: 10.13336/j.1003-6520.hve.20180131002
    [58] Song X C, Shi Z Q, Liu C, et al. Experimental investigation on the characteristics of drawn vacuum arc in initial expanding stage and in forced current-zero stage. IEEE Trans Plasma Sci, 2011, 39(6): 1330 doi: 10.1109/TPS.2011.2131688
    [59] Liu B, Wu J W, Xin C. Study on dynamic characteristic in force interrupted DC vacuum arc. IEEE Trans Plasma Sci, 2014, 42(10): 2382 doi: 10.1109/TPS.2014.2334639
    [60] Liu B, Wu J W, Xin C, et al. Research on the reignition condition for DC arc forcing interruption // Proceedings of the 25th International Symposium on Discharges and Electrical Insulation in Vacuum. Tomsk, 2012: 169
    [61] Liu L H, Zhuang J W, Wang C, et al. A hybrid DC vacuum circuit breaker for medium voltage: Principle and first measurements. IEEE Trans Power Deliv, 2015, 30(5): 2096 doi: 10.1109/TPWRD.2014.2384023
    [62] Liu W, Ma H C, Zhang H T, et al. Development of solid hybrid DC circuit breaker for DC distribution network. South Power Syst Technol, 2016, 10(4): 37 doi: 10.13648/j.cnki.issn1674-0629.2016.04.006

    劉偉, 馬海超, 張海濤, 等. 配電網用全固態混合式直流斷路器研發. 南方電網技術, 2016, 10(4):37 doi: 10.13648/j.cnki.issn1674-0629.2016.04.006
    [63] Meng K. Research on 270V DC Solid-State Power Controller [Dissertation]. Xi’an: Xidian University, 2019

    蒙凱. 270V直流固態功率控制器研究 [學位論文]. 西安: 西安電子科技大學, 2019
    [64] Huo W L, Wu J W, Li D G, et al. Interruption transient characteristics and experimental research of aero 270V DC hybrid breaker. Proc CSEE, 2017, 37(4): 1062 doi: 10.13334/j.0258-8013.pcsee.161301

    霍文磊, 武建文, 李德閣, 等. 航空270V混合式斷路器分斷瞬態特性及實驗研究. 中國電機工程學報, 2017, 37(4):1062 doi: 10.13334/j.0258-8013.pcsee.161301
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  554
  • HTML全文瀏覽量:  201
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-28
  • 網絡出版日期:  2022-07-27
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回