<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于GA?SVM的鋼渣基膠凝材料開發及料漿配比優化

楊曉炳 閆澤鵬 尹升華 李偉光 高謙

楊曉炳, 閆澤鵬, 尹升華, 李偉光, 高謙. 基于GA?SVM的鋼渣基膠凝材料開發及料漿配比優化[J]. 工程科學學報, 2022, 44(11): 1897-1908. doi: 10.13374/j.issn2095-9389.2022.02.25.001
引用本文: 楊曉炳, 閆澤鵬, 尹升華, 李偉光, 高謙. 基于GA?SVM的鋼渣基膠凝材料開發及料漿配比優化[J]. 工程科學學報, 2022, 44(11): 1897-1908. doi: 10.13374/j.issn2095-9389.2022.02.25.001
YANG Xiao-bing, YAN Ze-peng, YIN Sheng-hua, LI Wei-guang, GAO Qian. Development of steel-slag-based cementitious material and optimization of slurry ratio based on genetic algorithm and support vector machine (GA?SVM)[J]. Chinese Journal of Engineering, 2022, 44(11): 1897-1908. doi: 10.13374/j.issn2095-9389.2022.02.25.001
Citation: YANG Xiao-bing, YAN Ze-peng, YIN Sheng-hua, LI Wei-guang, GAO Qian. Development of steel-slag-based cementitious material and optimization of slurry ratio based on genetic algorithm and support vector machine (GA?SVM)[J]. Chinese Journal of Engineering, 2022, 44(11): 1897-1908. doi: 10.13374/j.issn2095-9389.2022.02.25.001

基于GA?SVM的鋼渣基膠凝材料開發及料漿配比優化

doi: 10.13374/j.issn2095-9389.2022.02.25.001
基金項目: 山東省重大科技創新工程資助項目(2019SDZY05); 中央高校基本科研業務費專項資金資助項目(FRF-TP-20-039A1); 礦物加工科學與技術國家重點實驗室開放基金資助項目(BGRIMM-KJSKL-2021-18);中國博士后科學基金資助項目(2021M690363)
詳細信息
    通訊作者:

    E-mail: yan_zepeng@163.com

  • 中圖分類號: TG862.2

Development of steel-slag-based cementitious material and optimization of slurry ratio based on genetic algorithm and support vector machine (GA?SVM)

More Information
  • 摘要: 針對某露天轉地下礦山充填成本高的問題,充分利用礦山周邊的工業廢棄物開發滿足嗣后充填采礦法所要求的充填膠凝材料,并對充填料漿的配比進行了優化。首先,分析了材料的物化特性,采用不同的激發配方進行了室內試驗,構建了用于鋼渣基膠凝材料配方預測的GA?SVM模型,確定了鋼渣基膠凝材料的最佳配方(質量分數)為:鋼渣30%、脫硫石膏4%、水泥熟料12%、芒硝1%;其次采用XRD和SEM分析了鋼渣基膠凝材料的水化機理;最后基于灰靶多目標決策模型對料漿配比進行優化實驗,以強度(7 d和28 d)、工作特性(坍落度、泌水率)、成本為指標優化料漿配比。結果表明,采用新型鋼渣基膠凝材料,充填料漿的最佳配比參數為:灰砂比1∶4,固相質量分數為72%。并進行了驗證實驗,得到相應強度參數和工作特性參數分別為1.74 MPa、3.61 MPa、24.2 cm和5.91%,均滿足嗣后充填的要求,此配比條件下的充填成本為每立方米113元,較水泥充填成本降低了38.92%。

     

  • 圖  1  尾砂粒度分布統計

    Figure  1.  Statistics of the tailings particle size distribution

    圖  2  遺傳算法優化示意圖. (a) 遺傳算法; (b) 試驗流程

    Figure  2.  Schematic of genetic algorithm optimization: (a) genetic algorithm; (b) test process

    圖  3  單因素影響下鋼渣基膠凝材料強度試驗的極差分析結果. (a) 熟料及脫硫石膏摻量(7 d); (b) 熟料及脫硫石膏摻量(28 d); (c) 芒硝摻量; (d) 鋼渣摻量

    Figure  3.  Range analysis results of the strength test of steel-slag-based cementitious materials under the single factor: (a) clinker and desulfurization gypsum content (7 d); (b) clinker and desulfurization gypsum content (7 d); (c) mirabilite content; (d) steel slag content

    圖  4  GA?SVM模型適應度曲線

    Figure  4.  GA?SVM model fitness curve

    圖  5  GA?SVM模型訓練集測試結果對比

    Figure  5.  Comparison of the test results of the GA?SVM model training set

    圖  6  28 d強度預測結果. (a)固定熟料摻量12%、芒硝摻量0.5%; (b)固定鋼渣摻量30%、脫硫石膏摻量4%

    Figure  6.  Results of 28 d strength prediction: (a) fixed clinker content of 12% and mirabilite content of 0.5%; (b) fixed steel slag content of 30% and desulfurized gypsum content of 4%

    圖  7  7 d強度預測結果. (a) 固定脫硫石膏摻量4%、芒硝摻量1.0%; (b) 固定鋼渣摻量30%、熟料摻量12%

    Figure  7.  Results of 7 d strength prediction: (a) fixed desulfurized gypsum content of 4% and mirabilite content of 1.0%; (b) fixed steel slag content of 30% and clinker content of 12%

    圖  8  水化產物X射線衍射分析. (a)不同養護齡期的水化產物; (b)不同鋼渣摻量的28 d水化產物

    Figure  8.  X-ray diffraction analysis of hydration products: (a) hydration products with different curing ages; (b) 28 d hydration products with different steel slag contents

    圖  9  不同鋼渣摻量試塊的28 d水化產物微觀形貌

    Figure  9.  Microstructure of 28 d hydration products of test blocks with different steel slag contents

    圖  10  固相質量分數對料漿性能的影響. (a) 7 d強度; (b) 28 d 強度; (c) 塌落度; (d) 泌水率

    Figure  10.  Effect of solid concentration on paste properties: (a) 7 d curing age; (b) 28 d curing age; (c) slump; (d) bleeding rate

    表  1  實驗材料化學成分組成(質量分數)

    Table  1.   Main chemical components of the backfill material %

    TFeFeOSiO2CaOMgOAl2O3MnOSPIgnition loss
    8.926.2667.753.444.781.480.310.250.0741.12
    下載: 導出CSV

    表  2  活性材料的化學成分組成(質量分數)

    Table  2.   Main chemical components of the active material %

    Active materialsSiO2CaOMgOAl2O3Fe2O3SSO3MFe
    Steel slag16.5242.749.9612.7216.3000.02
    Slag35.1543.467.5712.151.24
    下載: 導出CSV

    表  3  水泥熟料的化學成分組成(質量分數)

    Table  3.   Main chemical components of the cement clinker %

    SiO2CaOMgOAl2O3Fe2O3FeOSO3Na2OOtherIgnition loss
    22.566.30.834.863.430.020.3100.790.96
    下載: 導出CSV

    表  4  激發劑配方試驗結果

    Table  4.   Test results of the activator formulations

    FormulationNo.Clinker mass fraction/%Desulfurization gypsum mass fraction /%Mirabilite mass fraction /%Active material mass fraction /%Uniaxial compressive strength (UCS)/MPa
    Steel slagSlag7 d28 d
    More clinker less salt112201076 1.833.47
    21240.52063.5 1.573.19
    312613051 1.342.65
    41420.53053.5 1.062.93
    514411071 1.593.98
    614602060 1.453.15
    716212061 1.243.46
    816403050 1.043.02
    91660.51067.5 1.424.25
    More salt less clinker102801080 1.122.83
    112120.52065.5 0.882.12
    1221613051 0.951.29
    13480.53057.5 0.752.12
    1441211073 1.292.72
    1541602060 0.922.04
    166812065 0.942.62
    1761203052 0.611.69
    186160.51067.5 1.323.46
    More salt more clinker199601075 1.283.32
    20980.52062.5 1.113.45
    2191013050 0.912.51
    221160.53052.5 1.152.82
    2311811070 1.453.61
    24111002059 1.342.83
    2513612060 1.363.13
    2613803049 1.192.89
    2713100.51066.51.523.51
    下載: 導出CSV

    表  5  測試集預測結果的相對誤差

    Table  5.   Relative error of the test set prediction results

    No.7 d strength28 d strength
    Forecast result/MPaTest results/MPaRelative error/%Forecast result/MPaTest results/MPaRelative error/%
    51.771.5911.14.393.9810.19
    101.221.128.813.042.837.41
    110.990.8812.62 2.312.128.79
    150.950.923.6 2.152.045.61
    181.421.327.63 3.703.466.9
    221.071.157.28 3.072.828.8
    下載: 導出CSV

    表  6  充填料漿配比試驗結果

    Table  6.   Test results of the filling slurry

    No.Cement–sand ratioSolid concentration/%Uniaxial compressive strength/MPaSlump/cmBleeding rate/%Cost/¥
    7 d28 d
    A11∶4681.162.6626.29.4109
    A2701.342.9524.97.2111
    A3721.823.5323.66.3113
    A41∶6680.852.3626.410.886
    A5701.142.5325.39.588
    A6721.293.1224.17.490
    A71∶8680.512.1527.112.371
    A8700.632.2526.211.673
    A9720.832.7225.19.175
    下載: 導出CSV

    表  7  充填料漿配比方案灰靶決策結果

    Table  7.   Grey target decision-making results of filling slurry ratio plan

    Schemee
    A12.9
    A21.17
    A30.238
    A51.783
    A60.44
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021

    李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021
    [2] Kesimal A, Yilmaz E, Ercikdi B. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cem Concr Res, 2004, 34(10): 1817 doi: 10.1016/j.cemconres.2004.01.018
    [3] Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829

    尹升華, 劉家明, 陳威, 等. 不同粗骨料對膏體凝結性能的影響及配比優化. 工程科學學報, 2020, 42(7):829
    [4] Yang X B, Xiao B L, Gao Q, et al. Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr Build Mater, 2020, 255: 119371 doi: 10.1016/j.conbuildmat.2020.119371
    [5] Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918

    張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918
    [6] Tilmaz E, Belem T, Benzaazoua M, et al. Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill. Geotech Test J, 2010, 33(5): 351
    [7] Wei H B, Ba L, Wen Z J, et al. Development of magnesium slag binder and optimization of slurry ratio based on entropy weight multi-attribute decision. Chin J Nonferrous Met,https://kns.cnki.net/kcms/detail/43.1238.tg.20210902.1616.009.html

    韋寒波, 巴蕾, 溫震江, 等. 基于熵權多屬性決策的鎂渣膠結料開發及料漿配比優化. 中國有色金屬學報,https://kns.cnki.net/kcms/detail/43.1238.tg.20210902.1616.009.html
    [8] Yang X B. Study on the Collaborative Preparation of Filling Materials with Low Quality and Multi-Solid Wastes and Their Pressure Drop in Pipeline Transportation [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    楊曉炳. 低品質多固廢協同制備充填料漿及其管輸阻力研究[學位論文]. 北京: 北京科技大學, 2020
    [9] Shi C J, Qian J S. High performance cementing materials from industrial slags—a review. Resour Conserv Recycl, 2000, 29(3): 195 doi: 10.1016/S0921-3449(99)00060-9
    [10] Flatt R J, Roussel N, Cheeseman C R. Concrete: An eco material that needs to be improved. J Eur Ceram Soc, 2012, 32(11): 2787 doi: 10.1016/j.jeurceramsoc.2011.11.012
    [11] Gijbels K, Iacobescu R I, Pontikes Y, et al. Alkali-activated binders based on ground granulated blast furnace slag and phosphogypsum. Constr Build Mater, 2019, 215: 371 doi: 10.1016/j.conbuildmat.2019.04.194
    [12] Jiang H Q, Qi Z J, Yilmaz E, et al. Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills. Constr Build Mater, 2019, 218: 689 doi: 10.1016/j.conbuildmat.2019.05.162
    [13] Gorai B, Jana R K, Premchand. Characteristics and utilisation of copper slag—a review. Resour Conserv Recycl, 2003, 39(4): 299 doi: 10.1016/S0921-3449(02)00171-4
    [14] Wu F, Yang F G, Xiao B L, et al. Influence of steel slag dosage on early age strength and rheological properties of paste. Mater Rep, 2021, 35(3): 3021 doi: 10.11896/cldb.20050029

    吳凡, 楊發光, 肖柏林, 等. 鋼渣摻量對膏體早期強度及流變特性的影響. 材料導報, 2021, 35(3):3021 doi: 10.11896/cldb.20050029
    [15] Teng S, Lim T Y D, Sabet Divsholi B. Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Constr Build Mater, 2013, 40: 875 doi: 10.1016/j.conbuildmat.2012.11.052
    [16] Xiao B L, Miao S J, Gao Q, et al. Study on solidification characteristics of metallurgical slag binder materials for ultra-fine tailings backfill. Chin J Nonferrous Met,http://kns.cnki.net/kcms/detail/43.1238.TG.20210820.1435.011.html

    肖柏林, 苗勝軍, 高謙, 等. 冶金渣膠結材料對超細全尾砂的固化特性研究. 中國有色金屬學報,http://kns.cnki.net/kcms/detail/43.1238.TG.20210820.1435.011.html
    [17] Qi C C, Fourie A, Chen Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J Clean Prod, 2018, 183: 566 doi: 10.1016/j.jclepro.2018.02.154
    [18] Yang X, Yang Z Q, Gao Q, et al. Cemented filling strength test and optimal proportion decision of mixed filling aggregate. Rock Soil Mech, 2016, 37(Suppl 2): 635

    楊嘯, 楊志強, 高謙, 等. 混合充填骨料膠結充填強度試驗與最優配比決策研究. 巖土力學, 2016, 37(增刊2): 635
    [19] Ma X Y, Duan Y F, Liu M, et al. Prediction of pressure drop of coke water slurry flowing in pipeline by PSO-BP neural network. Proc CSEE, 2012, 32(5): 54 doi: 10.13334/j.0258-8013.pcsee.2012.05.005

    馬修元, 段鈺鋒, 劉猛, 等. 基于PSO-BP神經網絡的水焦漿管道壓降預測. 中國電機工程學報, 2012, 32(5):54 doi: 10.13334/j.0258-8013.pcsee.2012.05.005
    [20] Pourbasheer E, Riahi S, Ganjali M R, et al. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. Eur J Med Chem, 2009, 44(12): 5023 doi: 10.1016/j.ejmech.2009.09.006
    [21] Ma L, Zhang P Y, Guo R Z, et al. GA-SVM model for prediction flue gas temperature of roadway fire under sealing process. J China Univ Min Technol, 2021, 50(4): 641 doi: 10.13247/j.cnki.jcumt.001309

    馬礪, 張鵬宇, 郭睿智, 等. 巷道火災密閉過程煙氣溫度預測的GA-SVM模型. 中國礦業大學學報, 2021, 50(4):641 doi: 10.13247/j.cnki.jcumt.001309
    [22] Bi J, Li X J. Comprehensive evaluation of coal mine safety based on grey target model with combination weighting of game theory. J Saf Sci Technol, 2019, 15(7): 113 doi: 10.11731/j.issn.1673-193x.2019.07.018

    畢娟, 李希建. 基于博弈論組合賦權灰靶模型的煤礦安全綜合評價. 中國安全生產科學技術, 2019, 15(7):113 doi: 10.11731/j.issn.1673-193x.2019.07.018
    [23] Wen Z J, Gao Q, Wang Z H, et al. Optimization of compound activator ratio of the ground granulated blast furnace slag powder cementitious material based on RSM-DF. Chin J Rock Mech Eng, 2020, 39(Suppl 1): 3103

    溫震江, 高謙, 王忠紅, 等. 基于RSM-DF的礦渣膠凝材料復合激發劑配比優化. 巖石力學與工程學報, 2020, 39(增刊1): 3103
    [24] Li M H, Yang Z Q, Wang Y T, et al. Experiment study of compressive strength and mechanical property of filling body for fly ash composite cementitious materials. J China Univ Min Technol, 2015, 44(4): 650 doi: 10.13247/j.cnki.jcumt.000365

    李茂輝, 楊志強, 王有團, 等. 粉煤灰復合膠凝材料充填體強度與水化機理研究. 中國礦業大學學報, 2015, 44(4):650 doi: 10.13247/j.cnki.jcumt.000365
    [25] Dong Y, Yang Z Q, Gao Q. Effect of steel slag substitution on the properties of composite cementitious backfill material. Bull Chin Ceram Soc, 2016, 35(9): 2967 doi: 10.16552/j.cnki.issn1001-1625.2016.09.048

    董越, 楊志強, 高謙. 鋼渣取代量對復合充填膠凝材料性能的影響. 硅酸鹽通報, 2016, 35(9):2967 doi: 10.16552/j.cnki.issn1001-1625.2016.09.048
    [26] Cui X W, Ni W, Ren C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag. Chin J Mater Res, 2017, 31(9): 687 doi: 10.11901/1005.3093.2016.741

    崔孝煒, 倪文, 任超. 鋼渣礦渣基全固廢膠凝材料的水化反應機理. 材料研究學報, 2017, 31(9):687 doi: 10.11901/1005.3093.2016.741
  • 加載中
圖(10) / 表(7)
計量
  • 文章訪問數:  457
  • HTML全文瀏覽量:  175
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-25
  • 網絡出版日期:  2022-09-02
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回