<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鹽度對疏水改性聚丙烯酰胺吸附行為的影響

鄒文杰 饒博 趙偉 徐瑞景 王廷

鄒文杰, 饒博, 趙偉, 徐瑞景, 王廷. 鹽度對疏水改性聚丙烯酰胺吸附行為的影響[J]. 工程科學學報, 2023, 45(4): 533-540. doi: 10.13374/j.issn2095-9389.2022.02.19.003
引用本文: 鄒文杰, 饒博, 趙偉, 徐瑞景, 王廷. 鹽度對疏水改性聚丙烯酰胺吸附行為的影響[J]. 工程科學學報, 2023, 45(4): 533-540. doi: 10.13374/j.issn2095-9389.2022.02.19.003
ZOU Wen-jie, RAO Bo, ZHAO Wei, XU Rui-jing, WANG Ting. Effect of salinity on the adsorption behavior of hydrophobically modified polyacrylamide[J]. Chinese Journal of Engineering, 2023, 45(4): 533-540. doi: 10.13374/j.issn2095-9389.2022.02.19.003
Citation: ZOU Wen-jie, RAO Bo, ZHAO Wei, XU Rui-jing, WANG Ting. Effect of salinity on the adsorption behavior of hydrophobically modified polyacrylamide[J]. Chinese Journal of Engineering, 2023, 45(4): 533-540. doi: 10.13374/j.issn2095-9389.2022.02.19.003

鹽度對疏水改性聚丙烯酰胺吸附行為的影響

doi: 10.13374/j.issn2095-9389.2022.02.19.003
基金項目: 國家自然科學基金資助項目(51604019); 中央高校基本科研業務費專項資金資助項目(FRF-IP-20-03); 國家重點研發計劃重點專項資助項目(2020YFC1807804)
詳細信息
    通訊作者:

    E-mail: wjzou@ustb.edu.cn

  • 中圖分類號: TD926.2+1

Effect of salinity on the adsorption behavior of hydrophobically modified polyacrylamide

More Information
  • 摘要: 選擇性絮凝分選是微細粒礦物高效分選的重要手段之一。為了強化絮凝劑在親水、疏水礦物表面的絮凝選擇性,將疏水基團十六烷基二甲基烯丙基氯化銨(C16DMAAC)引入聚丙烯酰胺(PAM)分子鏈中合成了疏水改性聚丙烯酰胺(HMPAM),采用耗散型石英晶體微天平(QCM-D)研究了不同濃度K+和Ca2+對分散劑六偏磷酸鈉(SHMP)和HMPAM在親水和疏水化表面原位吸附行為的影響,并使用激光粒度分析儀分析了不同鹽度下SHMP和HMPAM對硅微粉及疏水改性硅微粉粒徑分布的影響。結果表明,不同鹽度環境下HMPAM均呈現了較好的絮凝選擇性。背景溶液分別為10 mmol?L?1、100 mmol?L?1 KCl及1 mmol?L?1 CaCl2時,QCM-D結果表明SHMP在疏水化表面均未形成吸附層,隨后HMPAM在疏水化表面發生吸附,且隨著鹽度的增加,HMPAM的吸附量增大且吸附層的耗散性降低;背景溶液為10 mmol?L?1 CaCl2時,SHMP也未抑制HMPAM在疏水化表面的吸附,形成了諧振頻率變化(Δf)為?18.3 Hz的吸附層。相比,100 mmol?L?1 KCl時1 mmol?L?1 SHMP在SiO2表面形成薄而致密的吸附層,隨后抑制了HMPAM的吸附;10 mmol?L?1 CaCl2中SHMP在SiO2表面形成耗散的吸附層,隨后10 mmol?L?1 CaCl2沖洗過程中沉積了較為致密的吸附層,也抑制了HMPAM吸附。不同鹽度下SHMP和HMPAM對硅微粉及疏水化硅微粉粒徑分布的影響與QCMD試驗結果相一致。本研究是選擇性絮凝分選中絮凝劑選擇與研發的重要研究基礎。

     

  • 圖  1  1 mmol?L?1 SHMP和100 mg·L?1 HMPAM在OTS-SiO2表面的吸附行為. (a)10 mmol?L?1 KCl; (b)100 mmol?L?1 KCl

    Figure  1.  Effect of 1 mmol?L?1 SHMP and 100 mg·L?1 HMPAM on adsorption behavior of OTS-SiO2: (a) in 10 mmol?L?1 KCl; (b) in 100 mmol?L?1 KCl

    圖  2  1 mmol?L?1 SHMP和100 mg?L?1 HMPAM在OTS-SiO2表面的吸附行為. (a) 1 mmol?L?1 CaCl2; (b) 10 mmol?L?1 CaCl2

    Figure  2.  Effect of 1 mmol?L?1 SHMP and 100 mg·L?1 HMPAM on adsorption behavior of OTS-SiO2: (a) in 1 mmol?L?1 CaCl2; (b) in 100 mmol?L?1 CaCl2

    圖  3  1 mmol?L?1 SHMP和100 mg·L?1 HMPAM在SiO2表面的吸附行為. (a) 100 mmol?L?1 KCl; (b) 10 mmol?L?1 CaCl2

    Figure  3.  Effect of 1 mmol?L?1 SHMP and 100 mg·L?1 HMPAM on adsorption behavior of SiO2: (a) in 100 mmol?L?1 KCl; (b) in 10 mmol?L?1 CaCl2

    圖  4  1 mmol?L?1 SHMP在10 mmol?L?1 CaCl2溶液環境下SiO2基底表面的SEM/EDS圖像

    Figure  4.  SEM/EDS imagaes of silica surface with effect of 1 mmol?L?1 SHMP in 10 mmol?L?1 CaCl2 solution

    圖  5  1 mmol?L?1 SHMP和100 mg·L?1 HMPAM作用前后OTS-硅微粉的表觀粒徑分布. (a) 10 mmol?L?1 KCl; (b) 100 mmol?L?1 KCl

    Figure  5.  Effect of 1 mmol?L?1 SHMP and 100 mg·L?1 HMPAM on the floc size distribution of OTS-silica powder: (a) in 10 mmol?L?1 KCl; (b) in 100 mmol?L?1 KCl

    圖  6  1 mmol?L?1 SHMP和100 mg·L?1 HMPAM作用前后OTS-硅微粉的表觀粒徑分布. (a)1 mmol?L?1 CaCl2; (b) 10 mmol?L?1 CaCl2

    Figure  6.  Effect of 1 mmol?L?1 SHMP and 100 mg·L?1 HMPAM on floc size distribution of OTS-silica powder: (a) in 1 mmol?L?1 CaCl2; (b)10 mmol?L?1 CaCl2

    圖  7  1 mmol?L?1 SHMP和100 mg·L?1 HMPAM作用前后硅微粉的表觀粒徑分布. (a)100 mmol?L?1 KCl; (b)10 mmol?L?1 CaCl2

    Figure  7.  Effect of 1 mmol?L?1 SHMP and 100 mg·L?1 HMPAM on floc size distribution of silica powder: (a) in 100 mmol?L?1 KCl; (b) in 10 mmol?L?1 CaCl2

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [2] Cai Z, Jiang R L, Luo S L, et al. The new method of ultrafine coal separation—Selective flocculation. J China Univ Min Technol, 1993, 22(1): 54

    蔡璋, 蔣榮立, 羅時磊, 等. 極細粒煤泥分選新方法——選擇性絮凝. 中國礦業大學學報, 1993, 22(1):54
    [3] Zou W J, Gong L, Huang J, et al. Adsorption of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal. Miner Eng, 2019, 142: 105887 doi: 10.1016/j.mineng.2019.105887
    [4] Evani S, Rose G D. Water soluble hydrophobe association polymers. Polym Mater Sci Eng, 1987, 57: 477
    [5] Lu H S, Huang Z Y. Solution and adsorption properties of hydrophobically associating polyacrylamide prepared in inverse microemulsion polymerization. J Macromol Sci A, 2009, 46(4): 412 doi: 10.1080/10601320902728736
    [6] Liu J X, Zhou W, Liu Y G, et al. Adsorption of hydrophobically associating polymer on sand: Influence of hydrophobe content and micro-block length. Chin J Appl Chem, 2011, 28(7): 785

    柳建新, 周薇, 劉義剛, 等. 疏水締合聚合物在石英砂表面的吸附—疏水基含量和微嵌段長度對吸附的影響. 應用化學, 2011, 28(7):785
    [7] Yue Q Y, Li C X, Gao B Y, et al. Preparation of hydrophobic associating cationic polyacrylamide flocculant and its deoiling effect for oily wastewater. Petrochem Technol, 2009, 38(2): 169 doi: 10.3321/j.issn:1000-8144.2009.02.011

    岳欽艷, 李春曉, 高寶玉, 等. 疏水締合陽離子型聚丙烯酰胺絮凝劑的制備及其對含油廢水的除油效果. 石油化工, 2009, 38(2):169 doi: 10.3321/j.issn:1000-8144.2009.02.011
    [8] Wang H, Zhu L N, Sun Y L. Flocculation properties of hydrophobically modified polyacrylamides for tailing slurry with difficult sedimentation. J Kunming Univ Sci Technol (Nat Sci Ed), 2013, 38(5): 101

    王紅, 朱麗娜, 孫彥琳. 疏水改性聚丙烯酰胺的制備及其對難沉降尾礦的絮凝性能研究. 昆明理工大學學報(自然科學版), 2013, 38(5):101
    [9] Cao X L, Hu Y, Song X W, et al. Investigation on thickening property of the hydrophobically associating polyacrylamides. Chem J Chin Univ, 2014, 35(9): 2037 doi: 10.7503/cjcu20140179

    曹緒龍, 胡岳, 宋新旺, 等. 聚丙烯酰胺類疏水締合物的增黏因素研究. 高等學校化學學報, 2014, 35(9):2037 doi: 10.7503/cjcu20140179
    [10] Zhang Z J, Meng Q, Liu J T. Water chemistry in coal preparation: Water chemistry properties of circulating coal slime water system. J China Coal Soc, 2021, 46(2): 614 doi: 10.13225/j.cnki.jccs.xr20.2016

    張志軍, 孟齊, 劉炯天. 選煤水化學——循環煤泥水系統的水化學性質. 煤炭學報, 2021, 46(2):614 doi: 10.13225/j.cnki.jccs.xr20.2016
    [11] Zhang Z J, Zhuang L, Liu J T. Water chemistry in coal preparation: Effect of water chemistry properties on interparticle interaction. J China Coal Soc, 2021, 46(5): 1685 doi: 10.13225/j.cnki.jccs.xr20.1856

    張志軍, 莊麗, 劉炯天. 選煤水化學——水化學性質對顆粒間相互作用的影響. 煤炭學報, 2021, 46(5):1685 doi: 10.13225/j.cnki.jccs.xr20.1856
    [12] Molaei N, Bashir Wani O, Bobicki E R. A comparative study of biopolymer adsorption on model anisotropic clay surfaces using quartz crystal microbalance with dissipation (QCM-D). J Colloid Interface Sci, 2022, 615: 543 doi: 10.1016/j.jcis.2022.01.180
    [13] Zou W J, Gong L, Huang J, et al. Probing the adsorption and interaction mechanisms of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal surface: Impact of salinity. Miner Eng, 2019, 141: 105841 doi: 10.1016/j.mineng.2019.105841
    [14] Li G Z, Kou J, Xing Y, et al. Gold-leaching performance and mechanism of sodium dicyanamide. Int J Miner Metall Mater, 2021, 28(11): 1759 doi: 10.1007/s12613-020-2153-6
    [15] Montoya T, Jaiswal A, Nassar N N. Investigation of the interaction between nanoparticles, asphaltenes, and silica surfaces by real‐time quartz crystal microbalance with dissipation. Can J Chem Eng, 2021, 99(11): 2452 doi: 10.1002/cjce.24264
    [16] Wang B. Synthesis and solution properties of P(AM/NaSS/C16DMAAC) hydrophically associating water-soluble polymer. J China West Norm Univ (Nat Sci), 2010, 31(4): 408

    王斌. P(AM/NaSS/C16DMAAC)疏水締合聚合物的合成及溶液性能研究. 西華師范大學學報(自然科學版), 2010, 31(4):408
    [17] Dastan S, Hassnajili S, Abdollahi E. Hydrophobically associating terpolymers of acrylamide, alkyl acrylamide, and methacrylic acid as EOR thickeners. J Polym Res, 2016, 23(9): 175 doi: 10.1007/s10965-016-1058-6
    [18] Chen Q, Cao T T, Xiong Y, et al. Understanding interactions between clay and model coal surfaces in electrolyte solutions by a quartz crystal microbalance with dissipation study. Energy Fuels, 2018, 32(1): 233 doi: 10.1021/acs.energyfuels.7b02976
    [19] Rodahl M, H??k F, Fredriksson C, et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss, 1997, 107: 229 doi: 10.1039/a703137h
    [20] Voinova M V, Rodahl M, Jonson M, et al. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys Scr, 1999, 59(5): 391 doi: 10.1238/Physica.Regular.059a00391
    [21] Munro J C, Frank C W. Polyacrylamide adsorption from aqueous solutions on gold and silver surfaces monitored by the quartz crystal microbalance. Macromolecules, 2004, 37: 925 doi: 10.1021/ma030297w
    [22] Jiang S J, Wang X L. Synthesis and characterization of organic-inorganic hybrid flocculant PAM-PAFC. Chin J Environ Eng, 2017, 11(12): 6301 doi: 10.12030/j.cjee.201704008

    蔣紹階, 王昕蕾. 有機-無機雜化絮凝劑PAM-PAFC的合成與表征. 環境工程學報, 2017, 11(12):6301 doi: 10.12030/j.cjee.201704008
    [23] Zou W J, Fang Z C, Huang J, et al. Effect of salinity on adsorption of sodium hexametaphosphate and hydrophobically-modified polyacrylamide flocculant on kaolinite Al-OH surface. Colloids Surf A Physicochem Eng Aspects, 2020, 585: 124055 doi: 10.1016/j.colsurfa.2019.124055
    [24] Zou W J, Gong L, Pan M F, et al. Effect of salinity on adsorption and interaction forces of hydrophobically modified polyacrylamide on silica and alumina surfaces. Miner Eng, 2020, 150: 106280 doi: 10.1016/j.mineng.2020.106280
    [25] Xu R J, Zou W J, Wang T, et al. Adsorption and interaction mechanisms of Chi-g-P(AM-DMDAAC) assisted settling of kaolinite in a two-step flocculation process. Sci Total Environ, 2022, 816: 151576 doi: 10.1016/j.scitotenv.2021.151576
  • 加載中
圖(7)
計量
  • 文章訪問數:  540
  • HTML全文瀏覽量:  165
  • PDF下載量:  44
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-19
  • 網絡出版日期:  2022-03-24
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回