One-step glass-ceramics production process using iron smelting slags of spent automotive catalysts
-
摘要: 低溫鐵捕集技術是回收廢汽車催化劑中鉑族金屬最有前途的技術之一。鐵捕集熔煉渣以硅鋁酸鹽為主,同時含有少量有毒重金屬(如Cr、Ba、Ni、Mn等),其處置與資源化利用是當前行業的難題。本文致力于鐵捕集熔煉渣的重金屬固化和資源化利用,充分利用硅鋁酸鹽為網絡形成體,以重金屬和酸洗污泥中CaF2為形核劑,通過一步法制備微晶玻璃。差示掃描量熱分析結果表明,隨著酸洗污泥用量(質量分數)從7%增至28%,樣品的玻璃化轉變溫度與析晶溫度間隙由211 ℃降低到150 ℃,基礎玻璃的析晶活化能從321.8 kJ·mol?1降低到303.5 kJ·mol?1,Avrami指數由1.7增至3.7。表明酸洗污泥可以降低成核與析晶的溫差,有利于實現一步法工藝。酸洗污泥添加量(質量分數)為21%時,在900 ℃下熱處理1.2 h制備的微晶玻璃具有較佳性能,即密度3.04 g·cm?3,吸水率(質量分數)0.11%,維氏硬度和抗彎強度分別為742.72 HV和119.32 MPa。浸出毒性試驗表明重金屬Cr、Ba、Ni等均滿足美國環保局提出的毒性浸出實驗(TCLP)標準。玻璃結構分析表明酸洗污泥有利于增加基礎玻璃中的非橋氧含量,降低玻璃網絡聚合度,增強結晶趨勢。Abstract: The most important secondary resources of platinum group metals (PGMs) are spent automotive exhaust catalysts, which are called “mobile PGM mines.” Low-temperature iron-capture technology is a promising technology for recovering PGMs due to its high efficiency and low pollution. Because of the content of aluminosilicates and toxic heavy metals (Cr, Ba, Ni, and Mn), the disposal of iron-capture smelting slag is necessary. This paper is devoted to the solidification of heavy metals and the resource utilization of iron-capture smelting slag. Glass-ceramics were made by a one-step method using aluminosilicates as network formers. Heavy metals and CaF2 are employed as nucleating agents in pickling sludge. According to the analysis of differential scanning calorimetry, the glass transition temperature and crystallization temperature of samples are in the range of 650 ℃–700 ℃ and 800 ℃–920 ℃, respectively. The gap between the glass transition temperature and crystallization temperature of samples decreased from 211 ℃ to 150 ℃ when increasing the amount of pickling sludge from 7% to 28% (mass fraction). The devitrification activation energy decreased from 321.8 to 303.5 kJ·mol?1, while the Avrami index increased from 1.7 to 3.7. It demonstrates that pickling sludge can reduce the temperature difference between nucleation and crystallization, which is beneficial in realizing the one-step process. The effects of pickling sludge and heat treatment systems on glass-ceramics were investigated. The diopside phase is the main crystalline phase of glass-ceramics. Nepheline and Magnetite phases were detected when the amount of pickling sludge (mass fraction) reached 28%. The physical properties of the glass-ceramics were improved with the increase in heat treatment temperature and time. When the addition amount of pickling sludge (mass fraction) was 21%, the glass-ceramics prepared by heat treatment at 900 ℃ for 1.2 h had the best properties; namely, the density was 3.04 g·cm?3, the water absorption (mass fraction) was 0.11%, and the Vickers hardness and flexural strength were 742.72 HV and 119.32 MPa, respectively. The Toxicity Characteristic Leaching Procedure (TCLP) leaching standard was met by heavy metals such as Cr, Ba, and Ni in the toxicity test. Glass structure analysis revealed that the pickling sludge increased the nonbridging oxygen content in the base glass while reducing the degree of glass network polymerization, resulting in an enhanced crystallization tendency. The pickling sludge proved to have potential as an inexpensive nucleating agent in the preparation of glass-ceramics with excellent performance. The glass-ceramics with these unique properties are promising to be applied as building materials.
-
Key words:
- spent catalysts /
- pickling sludge /
- glass-ceramics /
- one-step process /
- crystallization
-
圖 8 不同熱處理制度下GC-3的微觀形貌圖. (a) 800 ℃,0.5 h; (b) 850 ℃,0.5 h; (c) 900 ℃,0.5 h; (d) 900 ℃, 0.4 h; (e) 900 ℃,0.8 h; (f) 900 ℃,1.2 h
Figure 8. Micromorphology of samples under varying heat treatment systems: (a) 800 ℃,0.5 h; (b) 850 ℃,0.5 h; (c) 900 ℃,0.5 h; (d) 900 ℃,0.4 h; (e) 900 ℃,0.8 h; (f) 900 ℃,1.2 h
表 1 原料的化學成分(質量分數)
Table 1. Main chemical composition of different materials
% Materials CaO SiO2 Al2O3 Na2O ZrO2 CeO2 Fe2O3 CaF2 Cr2O3 Others Smelting slag 22.09 38.69 8.20 6.46 6.89 4.53 4.28 2.32 0 6.54 Pickling sludge 30.67 7.89 2.57 1.48 0 0 20.85 22.86 5.32 8.36 表 2 不同酸洗污泥制備基礎玻璃析晶活化能(E)和Avrami指數(n)
Table 2. Crystallization activation energy (E) and Avrami index (n) of base glasses prepared from pickling sludges with different content
Pickling sludge (mass fraction)/% Slope Intercept R-squared ΔT E/ (kJ·mol?1) v /min?1 n 7 38.7 ?23.5 0.99 211 321.8 6.2 × 1011 1.7 14 38.6 ?24.5 0.98 204 320.9 1.7 × 1012 2.4 21 37.9 ?23.9 0.99 157 315.1 9.1 × 1011 3.1 28 36.5 ?22.6 0.99 150 303.5 2.4 × 1011 3.7 表 3 微晶玻璃的耐酸/堿性及重金屬固化效果對比
Table 3. Comparison of acid/alkaline resistance and leaching toxicity of glass-ceramic
Samples Acid resistance /% Alkali resistance /% Leaching concentrations of heavy metals/ (mg·L?1) Cr Ba Ni Mn GC-1 99.27 99.95 0.36 0.62 0.01 0.97 GC-2 98.83 99.95 0.42 0.59 0 0.82 GC-3 98.67 99.97 0.61 0.51 0 0.69 GC-4 98.35 99.93 0.67 0.39 0 0.67 TCLP limits 5 100 5 表 4 樣品GC-3性能檢測結果
Table 4. Performance test results of the samples GC-3
Heat treating regime Vickers hardness, HV Bending strength /MPa Density/ (g·cm?3) Water adsorption/ % Corrosion resistance/ % Temperature /℃ Time /h H2SO4 NaOH 800 1 697.53 87.73 2.96 0.13 98.44 99.93 850 1 707.85 109.15 3.03 0.12 98.67 99.97 900 1 723.48 116.79 3.04 0.09 99.10 99.96 900 0.4 678.92 80.82 2.89 0.08 98.96 99.98 900 0.8 691.98 94.28 2.93 0.10 99.05 99.86 900 1.2 742.72 119.32 3.04 0.11 99.16 99.79 表 5 不同酸洗污泥用量基礎玻璃的基礎結構單元面積及非橋氧含量
Table 5. Deconvoluted spectra and unbridged oxygen content in the glasses
Samples Q0 /% Q1 /% Q2 /% Q3 /% R-squared NBO/T GC-1 6.83 18.31 32.86 42.00 0.9991 1.90 GC-2 6.61 18.48 36.36 38.55 0.9995 1.93 GC-3 6.88 18.70 38.23 36.19 0.9994 1.96 GC-4 5.49 16.32 32.31 45.88 0.9997 1.81 www.77susu.com -
參考文獻
[1] Xue H, Dong H G, Zhao J C, et al. Research progress in recovery of platinum group metals from spent automotive exhaust catalysts. Precious Met, 2019, 40(3): 76 doi: 10.3969/j.issn.1004-0676.2019.03.015薛虎, 董海剛, 趙家春, 等. 從失效汽車尾氣催化劑中回收鉑族金屬研究進展. 貴金屬, 2019, 40(3):76 doi: 10.3969/j.issn.1004-0676.2019.03.015 [2] Zhang F Y, Lu S J. Research progress on recovery of platinum group metals from spent automotive catalysts supported on cordierite. Rare Met Mater Eng, 2021, 50(9): 3388張福元, 盧蘇君. 堇青石型廢汽車尾氣催化劑回收鉑族金屬研究進展. 稀有金屬材料與工程, 2021, 50(9):3388 [3] Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257丁云集, 張深根. 廢催化劑中鉑族金屬回收現狀與研究進展. 工程科學學報, 2020, 42(3):257 [4] Ding Y J, Cui Y J, Zhang S G. Mechanism and process of zinc fragmentation-acid leaching of platinum group metals concentrates from iron capture method. Chin J Rare Met, 2022, 46(1): 57 doi: 10.13373/j.cnki.cjrm.XY21090001丁云集, 崔言杰, 張深根. 鐵捕集鉑族金屬富集物的鋅碎化-酸解原理及工藝研究. 稀有金屬, 2022, 46(1):57 doi: 10.13373/j.cnki.cjrm.XY21090001 [5] Zheng H D, Ding Y J, Wen Q, et al. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications. Resour Conserv Recycl, 2021, 167: 105417 doi: 10.1016/j.resconrec.2021.105417 [6] Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373 [7] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644 [8] Zheng H D, Ding Y J, Wen Q, et al. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts. Sci Total Environ, 2022, 802: 149830 doi: 10.1016/j.scitotenv.2021.149830 [9] Chen Y X, Gao N, Wang X, et al. Structure and properties of MgO?Al2O3?SiO2 glass-ceramics made from laterite and sea sand ore. Shanghai Met, 2021, 43(4): 98 doi: 10.3969/j.issn.1001-7208.2021.04.017陳亞旭, 高寧, 王欣, 等. 采用紅土礦和海砂礦制作的MgO?Al2O3?SiO2微晶玻璃的結構和性能. 上海金屬, 2021, 43(4):98 doi: 10.3969/j.issn.1001-7208.2021.04.017 [10] Li B Q, Guo Y P, Zheng Z R, et al. Preparation and crystallization influence of ceramic waste residuebased glass ceramics with one-step sintering process. China Ceram, 2019, 55(5): 37 doi: 10.16521/j.cnki.issn.1001-9642.2019.05.007李保慶, 郭艷平, 鄭芷然, 等. 陶瓷廢渣為主要原料的一步法制備微晶玻璃及析晶影響. 中國陶瓷, 2019, 55(5):37 doi: 10.16521/j.cnki.issn.1001-9642.2019.05.007 [11] Li Y, Yi Y D, Chen K Y, et al. Optimization of performance and composition for glass ceramics prepared from mixing molten slags. Chin J Eng, 2019, 41(10): 1288李宇, 伊耀東, 陳奎元, 等. 冶金熔渣混合制備微晶玻璃的組成及性能優化. 工程科學學報, 2019, 41(10):1288 [12] Zhao G Z, Li Y, Dai W B, et al. Preparation and processing parameter research of high basicity steel slag-based glass-ceramics with one-step sintering process. Chin J Eng, 2016, 38(2): 207趙貴州, 李宇, 代文彬, 等. 鋼渣基高堿度微晶玻璃的一步法制備及工藝參數研究. 工程科學學報, 2016, 38(2):207 [13] Wang C Y, Jia H C, Wang A P, et al. Effect of TiO2 on the crystallization and properties of MgO?Al2O3?SiO2 glass-ceramics prepared by an “one-step” method from laterite ore. Ceram Int, 2019, 45(4): 5133 doi: 10.1016/j.ceramint.2018.10.051 [14] Ma J, Shi Y, Zhang H X, et al. Crystallization of CaO?MgO?Al2O3?SiO2 glass ceramic derived from blast furnace slag via one-step method. Mater Chem Phys, 2021, 261: 124213 doi: 10.1016/j.matchemphys.2020.124213 [15] Pei F J, Zhu G H, Li P, et al. Effects of CaF2 on the sintering and crystallisation of CaO?MgO?Al2O3?SiO2 glass-ceramics. Ceram Int, 2020, 46(11): 17825 doi: 10.1016/j.ceramint.2020.04.089 [16] Li H X, Li B W, Zhang X F, et al. Influence of Fe2O3 on the microstructure and properties of the nanocrystalline tailing-based glass-ceramics. J Synth Cryst, 2016, 45(1): 176 doi: 10.3969/j.issn.1000-985X.2016.01.030李紅霞, 李保衛, 張雪峰, 等. Fe2O3對納米晶尾礦微晶玻璃結構及性能的影響. 人工晶體學報, 2016, 45(1):176 doi: 10.3969/j.issn.1000-985X.2016.01.030 [17] Zong Y B, Chen W H, Fan Y, et al. Complementation in the composition of steel slag and red mud for preparation of novel ceramics. Int J Miner Metall Mater, 2018, 25(9): 1010 doi: 10.1007/s12613-018-1651-2 [18] He Y, Shen X F, Jiang Y, et al. Effects of Li2O replacing Na2O on glass forming, structure and properties of Na2O?MgO?Al2O3?SiO2 glass and glass-ceramics. Mater Chem Phys, 2021, 258: 123865 doi: 10.1016/j.matchemphys.2020.123865 [19] He D F, Ma H, Zhong H. Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics. J Eur Ceram Soc, 2021, 41(16): 342 doi: 10.1016/j.jeurceramsoc.2021.09.034 [20] Fran?a R, Bebsh M, Haimeur A, et al. Physicochemical surface characterizations of four dental CAD/CAM lithium disilicate-based glass ceramics on HF etching: An XPS study. Ceram Int, 2020, 46(2): 1411 doi: 10.1016/j.ceramint.2019.09.105 [21] Sun Y S, Ma L Y, Cui J D, et al. Effects of heat-treatment temperature and holding time on the microstructure and mechanical properties of lithium disilicate glass-ceramics. J Non Cryst Solids, 2021, 553: 120502 doi: 10.1016/j.jnoncrysol.2020.120502 [22] Zhang J J, Zhang X Y, Liu B, et al. Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. Int J Miner Metall Mater, 2022, 29(3): 563 doi: 10.1007/s12613-020-2219-5 [23] Ren Q, Liu C X, Zhang Q, et al. Effects of B2O3 substitution for Al2O3 on the crystallization and properties of translucent mica glass-ceramics. J Eur Ceram Soc, 2021, 41(16): 334 doi: 10.1016/j.jeurceramsoc.2021.09.048 [24] Shang W X, Peng Z W, Huang Y W, et al. Production of glass-ceramics from metallurgical slags. J Clean Prod, 2021, 317: 128220 doi: 10.1016/j.jclepro.2021.128220 [25] Shang W X, Peng Z W, Xu F C, et al. Preparation of enstatite-spinel based glass-ceramics by co-utilization of ferronickel slag and coal fly ash. Ceram Int, 2021, 47(20): 29400 doi: 10.1016/j.ceramint.2021.07.108 [26] Mysen B. Physics and chemistry of silicate glasses and melts. Eur J Mineral, 2003, 15(5): 781 doi: 10.1127/0935-1221/2003/0015-0781 -