<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

廢汽車催化劑鐵捕集熔煉渣一步法制備微晶玻璃研究

鄭環東 丁云集 何學峰 史志勝 菅金鑫 張深根

鄭環東, 丁云集, 何學峰, 史志勝, 菅金鑫, 張深根. 廢汽車催化劑鐵捕集熔煉渣一步法制備微晶玻璃研究[J]. 工程科學學報, 2022, 44(12): 2090-2099. doi: 10.13374/j.issn2095-9389.2022.02.17.001
引用本文: 鄭環東, 丁云集, 何學峰, 史志勝, 菅金鑫, 張深根. 廢汽車催化劑鐵捕集熔煉渣一步法制備微晶玻璃研究[J]. 工程科學學報, 2022, 44(12): 2090-2099. doi: 10.13374/j.issn2095-9389.2022.02.17.001
ZHENG Huan-dong, DING Yun-ji, HE Xue-feng, SHI Zhi-sheng, JIAN Jin-xin, ZHANG Shen-gen. One-step glass-ceramics production process using iron smelting slags of spent automotive catalysts[J]. Chinese Journal of Engineering, 2022, 44(12): 2090-2099. doi: 10.13374/j.issn2095-9389.2022.02.17.001
Citation: ZHENG Huan-dong, DING Yun-ji, HE Xue-feng, SHI Zhi-sheng, JIAN Jin-xin, ZHANG Shen-gen. One-step glass-ceramics production process using iron smelting slags of spent automotive catalysts[J]. Chinese Journal of Engineering, 2022, 44(12): 2090-2099. doi: 10.13374/j.issn2095-9389.2022.02.17.001

廢汽車催化劑鐵捕集熔煉渣一步法制備微晶玻璃研究

doi: 10.13374/j.issn2095-9389.2022.02.17.001
基金項目: 國家自然科學基金重點資助項目(U2002212,52204412);國家重點研發專項資助項目(2021YFC1910504,2019YFC1907101);廣東省基礎與應用基礎研究基金資助項目(2020A1515110408);佛山市人民政府科技創新專項資金資助項目(BK21BE002);中央高校基本科研業務費資助項目(FRF-TP-20-031A1)
詳細信息
    通訊作者:

    E-mail: dingyunji@ustb.edu.cn

  • 中圖分類號: TG142.71

One-step glass-ceramics production process using iron smelting slags of spent automotive catalysts

More Information
  • 摘要: 低溫鐵捕集技術是回收廢汽車催化劑中鉑族金屬最有前途的技術之一。鐵捕集熔煉渣以硅鋁酸鹽為主,同時含有少量有毒重金屬(如Cr、Ba、Ni、Mn等),其處置與資源化利用是當前行業的難題。本文致力于鐵捕集熔煉渣的重金屬固化和資源化利用,充分利用硅鋁酸鹽為網絡形成體,以重金屬和酸洗污泥中CaF2為形核劑,通過一步法制備微晶玻璃。差示掃描量熱分析結果表明,隨著酸洗污泥用量(質量分數)從7%增至28%,樣品的玻璃化轉變溫度與析晶溫度間隙由211 ℃降低到150 ℃,基礎玻璃的析晶活化能從321.8 kJ·mol?1降低到303.5 kJ·mol?1,Avrami指數由1.7增至3.7。表明酸洗污泥可以降低成核與析晶的溫差,有利于實現一步法工藝。酸洗污泥添加量(質量分數)為21%時,在900 ℃下熱處理1.2 h制備的微晶玻璃具有較佳性能,即密度3.04 g·cm?3,吸水率(質量分數)0.11%,維氏硬度和抗彎強度分別為742.72 HV和119.32 MPa。浸出毒性試驗表明重金屬Cr、Ba、Ni等均滿足美國環保局提出的毒性浸出實驗(TCLP)標準。玻璃結構分析表明酸洗污泥有利于增加基礎玻璃中的非橋氧含量,降低玻璃網絡聚合度,增強結晶趨勢。

     

  • 圖  1  冶煉渣和酸洗污泥XRD圖譜

    Figure  1.  XRD patterns of smelting slag and pickling sludge

    圖  2  不同酸洗污泥用量基礎玻璃的DSC圖譜

    Figure  2.  DSC of parent glass with different pickling sludge mass fraction

    圖  3  基礎玻璃ln(Tp2/α)與1000Tp?1關系圖

    Figure  3.  Variation of ln(Tp2/α) and 1000Tp?1

    圖  4  不同酸洗污泥用量制備的微晶玻璃XRD圖譜

    Figure  4.  XRD of glass-ceramics with different mass fraction of pickling sludge

    圖  5  不同用量酸洗污泥制備的微晶玻璃SEM圖. (a) 7%; (b) 14%; (c) 21%; (d) 28%

    Figure  5.  SEM of glass-ceramics with different mass fraction of pickling sludge: (a) 7%; (b) 14%; (c) 21%; (d) 28%

    圖  6  不同酸洗污泥用量對微晶玻璃性能的影響. (a) 密度和吸水率; (b) 維氏硬度和抗彎強度

    Figure  6.  Physical and chemical properties of the samples: (a) density and water adsorption; (b) Vickers hardness and bending strength

    圖  7  不同酸洗污泥用量下微晶玻璃斷口形貌圖. (a) 7%; (b) 14%; (c) 21%; (d) 28%

    Figure  7.  Fracture morphology of samples with different mass fraction of pickling sludge: (a) 7%; (b) 14%; (c) 21%; (d) 28%

    圖  8  不同熱處理制度下GC-3的微觀形貌圖. (a) 800 ℃,0.5 h; (b) 850 ℃,0.5 h; (c) 900 ℃,0.5 h; (d) 900 ℃, 0.4 h; (e) 900 ℃,0.8 h; (f) 900 ℃,1.2 h

    Figure  8.  Micromorphology of samples under varying heat treatment systems: (a) 800 ℃,0.5 h; (b) 850 ℃,0.5 h; (c) 900 ℃,0.5 h; (d) 900 ℃,0.4 h; (e) 900 ℃,0.8 h; (f) 900 ℃,1.2 h

    圖  9  不同酸洗污泥用量下基礎玻璃的紅外分析

    Figure  9.  DSC of parent glass with different content of pickling sludge

    圖  10  不同酸洗污泥用量基礎玻璃的拉曼分峰擬合. (a) 7%; (b)14% ; (c)21% : (d)28%

    Figure  10.  DSC of parent glass with different content pickling sludge: (a) 7%; (b)14% ; (c)21% : (d)28%

    表  1  原料的化學成分(質量分數)

    Table  1.   Main chemical composition of different materials %

    MaterialsCaOSiO2Al2O3Na2OZrO2CeO2Fe2O3CaF2Cr2O3Others
    Smelting slag22.0938.698.206.466.894.534.282.3206.54
    Pickling sludge30.677.892.571.480020.8522.865.328.36
    下載: 導出CSV

    表  2  不同酸洗污泥制備基礎玻璃析晶活化能(E)和Avrami指數(n)

    Table  2.   Crystallization activation energy (E) and Avrami index (n) of base glasses prepared from pickling sludges with different content

    Pickling sludge (mass fraction)/%SlopeInterceptR-squaredΔTE/ (kJ·mol?1)v /min?1n
    738.7?23.50.99211321.86.2 × 10111.7
    1438.6?24.50.98204320.91.7 × 10122.4
    2137.9?23.90.99157315.19.1 × 10113.1
    2836.5?22.60.99150303.52.4 × 10113.7
    下載: 導出CSV

    表  3  微晶玻璃的耐酸/堿性及重金屬固化效果對比

    Table  3.   Comparison of acid/alkaline resistance and leaching toxicity of glass-ceramic

    SamplesAcid resistance /%Alkali resistance /%Leaching concentrations of heavy metals/ (mg·L?1)
    CrBaNiMn
    GC-199.2799.950.360.620.010.97
    GC-298.8399.950.420.5900.82
    GC-398.6799.970.610.5100.69
    GC-498.3599.930.670.3900.67
    TCLP limits51005
    下載: 導出CSV

    表  4  樣品GC-3性能檢測結果

    Table  4.   Performance test results of the samples GC-3

    Heat treating regimeVickers hardness, HVBending strength /MPaDensity/ (g·cm?3)Water adsorption/ %Corrosion resistance/ %
    Temperature /℃Time /hH2SO4NaOH
    8001697.5387.732.960.1398.4499.93
    8501707.85109.153.030.1298.6799.97
    9001723.48116.793.040.0999.1099.96
    9000.4678.9280.822.890.0898.9699.98
    9000.8691.9894.282.930.1099.0599.86
    9001.2742.72119.323.040.1199.1699.79
    下載: 導出CSV

    表  5  不同酸洗污泥用量基礎玻璃的基礎結構單元面積及非橋氧含量

    Table  5.   Deconvoluted spectra and unbridged oxygen content in the glasses

    SamplesQ0 /%Q1 /%Q2 /%Q3 /%R-squaredNBO/T
    GC-16.8318.3132.8642.000.99911.90
    GC-26.6118.4836.3638.550.99951.93
    GC-36.8818.7038.2336.190.99941.96
    GC-45.4916.3232.3145.880.99971.81
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xue H, Dong H G, Zhao J C, et al. Research progress in recovery of platinum group metals from spent automotive exhaust catalysts. Precious Met, 2019, 40(3): 76 doi: 10.3969/j.issn.1004-0676.2019.03.015

    薛虎, 董海剛, 趙家春, 等. 從失效汽車尾氣催化劑中回收鉑族金屬研究進展. 貴金屬, 2019, 40(3):76 doi: 10.3969/j.issn.1004-0676.2019.03.015
    [2] Zhang F Y, Lu S J. Research progress on recovery of platinum group metals from spent automotive catalysts supported on cordierite. Rare Met Mater Eng, 2021, 50(9): 3388

    張福元, 盧蘇君. 堇青石型廢汽車尾氣催化劑回收鉑族金屬研究進展. 稀有金屬材料與工程, 2021, 50(9):3388
    [3] Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257

    丁云集, 張深根. 廢催化劑中鉑族金屬回收現狀與研究進展. 工程科學學報, 2020, 42(3):257
    [4] Ding Y J, Cui Y J, Zhang S G. Mechanism and process of zinc fragmentation-acid leaching of platinum group metals concentrates from iron capture method. Chin J Rare Met, 2022, 46(1): 57 doi: 10.13373/j.cnki.cjrm.XY21090001

    丁云集, 崔言杰, 張深根. 鐵捕集鉑族金屬富集物的鋅碎化-酸解原理及工藝研究. 稀有金屬, 2022, 46(1):57 doi: 10.13373/j.cnki.cjrm.XY21090001
    [5] Zheng H D, Ding Y J, Wen Q, et al. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications. Resour Conserv Recycl, 2021, 167: 105417 doi: 10.1016/j.resconrec.2021.105417
    [6] Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373
    [7] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644
    [8] Zheng H D, Ding Y J, Wen Q, et al. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts. Sci Total Environ, 2022, 802: 149830 doi: 10.1016/j.scitotenv.2021.149830
    [9] Chen Y X, Gao N, Wang X, et al. Structure and properties of MgO?Al2O3?SiO2 glass-ceramics made from laterite and sea sand ore. Shanghai Met, 2021, 43(4): 98 doi: 10.3969/j.issn.1001-7208.2021.04.017

    陳亞旭, 高寧, 王欣, 等. 采用紅土礦和海砂礦制作的MgO?Al2O3?SiO2微晶玻璃的結構和性能. 上海金屬, 2021, 43(4):98 doi: 10.3969/j.issn.1001-7208.2021.04.017
    [10] Li B Q, Guo Y P, Zheng Z R, et al. Preparation and crystallization influence of ceramic waste residuebased glass ceramics with one-step sintering process. China Ceram, 2019, 55(5): 37 doi: 10.16521/j.cnki.issn.1001-9642.2019.05.007

    李保慶, 郭艷平, 鄭芷然, 等. 陶瓷廢渣為主要原料的一步法制備微晶玻璃及析晶影響. 中國陶瓷, 2019, 55(5):37 doi: 10.16521/j.cnki.issn.1001-9642.2019.05.007
    [11] Li Y, Yi Y D, Chen K Y, et al. Optimization of performance and composition for glass ceramics prepared from mixing molten slags. Chin J Eng, 2019, 41(10): 1288

    李宇, 伊耀東, 陳奎元, 等. 冶金熔渣混合制備微晶玻璃的組成及性能優化. 工程科學學報, 2019, 41(10):1288
    [12] Zhao G Z, Li Y, Dai W B, et al. Preparation and processing parameter research of high basicity steel slag-based glass-ceramics with one-step sintering process. Chin J Eng, 2016, 38(2): 207

    趙貴州, 李宇, 代文彬, 等. 鋼渣基高堿度微晶玻璃的一步法制備及工藝參數研究. 工程科學學報, 2016, 38(2):207
    [13] Wang C Y, Jia H C, Wang A P, et al. Effect of TiO2 on the crystallization and properties of MgO?Al2O3?SiO2 glass-ceramics prepared by an “one-step” method from laterite ore. Ceram Int, 2019, 45(4): 5133 doi: 10.1016/j.ceramint.2018.10.051
    [14] Ma J, Shi Y, Zhang H X, et al. Crystallization of CaO?MgO?Al2O3?SiO2 glass ceramic derived from blast furnace slag via one-step method. Mater Chem Phys, 2021, 261: 124213 doi: 10.1016/j.matchemphys.2020.124213
    [15] Pei F J, Zhu G H, Li P, et al. Effects of CaF2 on the sintering and crystallisation of CaO?MgO?Al2O3?SiO2 glass-ceramics. Ceram Int, 2020, 46(11): 17825 doi: 10.1016/j.ceramint.2020.04.089
    [16] Li H X, Li B W, Zhang X F, et al. Influence of Fe2O3 on the microstructure and properties of the nanocrystalline tailing-based glass-ceramics. J Synth Cryst, 2016, 45(1): 176 doi: 10.3969/j.issn.1000-985X.2016.01.030

    李紅霞, 李保衛, 張雪峰, 等. Fe2O3對納米晶尾礦微晶玻璃結構及性能的影響. 人工晶體學報, 2016, 45(1):176 doi: 10.3969/j.issn.1000-985X.2016.01.030
    [17] Zong Y B, Chen W H, Fan Y, et al. Complementation in the composition of steel slag and red mud for preparation of novel ceramics. Int J Miner Metall Mater, 2018, 25(9): 1010 doi: 10.1007/s12613-018-1651-2
    [18] He Y, Shen X F, Jiang Y, et al. Effects of Li2O replacing Na2O on glass forming, structure and properties of Na2O?MgO?Al2O3?SiO2 glass and glass-ceramics. Mater Chem Phys, 2021, 258: 123865 doi: 10.1016/j.matchemphys.2020.123865
    [19] He D F, Ma H, Zhong H. Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics. J Eur Ceram Soc, 2021, 41(16): 342 doi: 10.1016/j.jeurceramsoc.2021.09.034
    [20] Fran?a R, Bebsh M, Haimeur A, et al. Physicochemical surface characterizations of four dental CAD/CAM lithium disilicate-based glass ceramics on HF etching: An XPS study. Ceram Int, 2020, 46(2): 1411 doi: 10.1016/j.ceramint.2019.09.105
    [21] Sun Y S, Ma L Y, Cui J D, et al. Effects of heat-treatment temperature and holding time on the microstructure and mechanical properties of lithium disilicate glass-ceramics. J Non Cryst Solids, 2021, 553: 120502 doi: 10.1016/j.jnoncrysol.2020.120502
    [22] Zhang J J, Zhang X Y, Liu B, et al. Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. Int J Miner Metall Mater, 2022, 29(3): 563 doi: 10.1007/s12613-020-2219-5
    [23] Ren Q, Liu C X, Zhang Q, et al. Effects of B2O3 substitution for Al2O3 on the crystallization and properties of translucent mica glass-ceramics. J Eur Ceram Soc, 2021, 41(16): 334 doi: 10.1016/j.jeurceramsoc.2021.09.048
    [24] Shang W X, Peng Z W, Huang Y W, et al. Production of glass-ceramics from metallurgical slags. J Clean Prod, 2021, 317: 128220 doi: 10.1016/j.jclepro.2021.128220
    [25] Shang W X, Peng Z W, Xu F C, et al. Preparation of enstatite-spinel based glass-ceramics by co-utilization of ferronickel slag and coal fly ash. Ceram Int, 2021, 47(20): 29400 doi: 10.1016/j.ceramint.2021.07.108
    [26] Mysen B. Physics and chemistry of silicate glasses and melts. Eur J Mineral, 2003, 15(5): 781 doi: 10.1127/0935-1221/2003/0015-0781
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  517
  • HTML全文瀏覽量:  152
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-17
  • 網絡出版日期:  2022-04-02
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回