[1] |
Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001徐匡迪. 關于潔凈鋼的若干基本問題. 金屬學報, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001
|
[2] |
Steneholm K, Andersson N A I, Tilliander A, et al. The role of process control on the steel cleanliness. Ironmak Steelmak, 2018, 45(2): 114 doi: 10.1080/03019233.2016.1245917
|
[3] |
Zhang L F, Ren Q, Duan H J, et al. Modelling of non-metallic inclusions in steel. Miner Process Extr Metall, 2020, 129(2): 184
|
[4] |
Sahai Y. Tundish technology for casting clean steel: A review. Metall Mater Trans B, 2016, 47(4): 2095 doi: 10.1007/s11663-016-0648-3
|
[5] |
Liu W, Yang S F, Li J S. Review of research on inclusion motion behaviors at the steel–slag interface. Chin J Eng, 2021, 43(12): 1647劉威, 楊樹峰, 李京社. 鋼–渣界面非金屬夾雜物運動行為研究進展. 工程科學學報, 2021, 43(12):1647
|
[6] |
Kaushik P, Lowry M, Yin H, et al. Inclusion characterisation for clean steelmaking and quality control. Ironmak Steelmak, 2012, 39(4): 284 doi: 10.1179/1743281211Y.0000000069
|
[7] |
Gu C, Wang Z L, Xiao W, et al. Research status and progress on cleanliness of high-fatigue-life bearing steels. Chin J Eng, 2021, 43(3): 299顧超, 王仲亮, 肖微, 等. 高疲勞壽命軸承鋼潔凈度現狀及研究進展. 工程科學學報, 2021, 43(3):299
|
[8] |
Liu J H, Zhang J, Li K W. Current state and prospect of technologies for removing inclusion by bubbles. Steelmaking, 2017, 33(2): 1劉建華, 張杰, 李康偉. 氣泡去除夾雜物技術研究現狀及發展趨勢. 煉鋼, 2017, 33(2):1
|
[9] |
Xue Z L, Wang Y F, Wang L T, et al. Inclusion removal from molten steel by attachment small bubbles. Acta Met Sin, 2003, 39(4): 431 doi: 10.3321/j.issn:0412-1961.2003.04.019薛正良, 王義芳, 王立濤, 等. 用小氣泡從鋼液中去除夾雜物顆粒. 金屬學報, 2003, 39(4):431 doi: 10.3321/j.issn:0412-1961.2003.04.019
|
[10] |
Kaushik P, Lehmann J, Nadif M. State of the art in control of inclusions, their characterization, and future requirements. Metall Mater Trans B, 2012, 43(4): 710 doi: 10.1007/s11663-012-9646-2
|
[11] |
Duan H J, Scheller P R, Ren Y, et al. Fluid flow and inclusion behavior around spherical-cap bubbles. JOM, 2019, 71(1): 69 doi: 10.1007/s11837-018-3193-5
|
[12] |
Lai Q R, Luo Z G, Hou Q F, et al. Numerical study of inclusion removal in steel continuous casting mold considering interactions between bubbles and inclusions. ISIJ Int, 2018, 58(11): 2062 doi: 10.2355/isijinternational.ISIJINT-2018-319
|
[13] |
Zheng X F, Hayes P C, Lee H G. Particle removal from liquid phase using fine gas bubbles. ISIJ Int, 1997, 37(11): 1091 doi: 10.2355/isijinternational.37.1091
|
[14] |
Zeng J, Dai K J, Xue F, et al. Numerical simulation investigation of orthogonal experiment in tundish with bottom gas blowing. Continuous Cast, 2017, 42(4): 6 doi: 10.13228/j.boyuan.issn1005-4006.20170049曾俊, 代開舉, 薛飛, 等. 中間包底吹氣正交試驗數值模擬研究. 連鑄, 2017, 42(4):6 doi: 10.13228/j.boyuan.issn1005-4006.20170049
|
[15] |
Yang B, Lei H, Bi Q, et al. Numerical simulation of collision-coalescence and removal of inclusions in a tundish. JOM, 2018, 70(12): 2950 doi: 10.1007/s11837-018-3061-3
|
[16] |
Zhang Q, Wang L, Xu Z. A new method of removing inclusions in molten steel by injecting gas from the shroud. ISIJ Int, 2006, 46(8): 1177 doi: 10.2355/isijinternational.46.1177
|
[17] |
Chang S, Cao X K, Zou Z S. Regimes of micro-bubble formation using gas injection into ladle shroud. Metall Mater Trans B, 2018, 49(3): 953 doi: 10.1007/s11663-018-1231-x
|
[18] |
Tang P, Zhou H, Li J X, et al. Relationship between flow behavior of molten steel and inclusion removal rate in ladle with bottom argon blowing. Chin J Process Eng, 2015, 15(5): 744 doi: 10.12034/j.issn.1009-606X.215264唐萍, 周海, 李敬想, 等. 鋼包底吹氬鋼液流動行為與夾雜去除率的關系. 過程工程學報, 2015, 15(5):744 doi: 10.12034/j.issn.1009-606X.215264
|
[19] |
Liu F G, Ren Y, Duan H J, et al. Mathematical simulation and plant trial on soft blowing process of ladle furnace. Steelmaking, 2019, 35(6): 24劉風剛, 任英, 段豪劍, 等. 鋼包軟吹過程優化數學模擬和工業試驗研究. 煉鋼, 2019, 35(6):24
|
[20] |
Lou W T, Zhu M Y. Numerical simulations of inclusion behavior and mixing phenomena in gas-stirred ladles with different arrangement of tuyeres. ISIJ Int, 2014, 54(1): 9 doi: 10.2355/isijinternational.54.9
|
[21] |
Zhang J, Liu J H, Yan B J, et al. Study on removing inclusions in silicon manganese deoxidized steel by increasing nitrogen and separating out nitrogen. Chin J Eng, 2018, 40(8): 937張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
|
[22] |
Matsuno H, Kikuchi Y, Arai M, et al. Mechanism of deoxidation with degassing of soluble gas from molten steel. Tetsu-to-Hagane, 1999, 85(7): 514 doi: 10.2355/tetsutohagane1955.85.7_514
|
[23] |
Li K W, Liu J H, Zhang J, et al. Theoretical analysis of bubble nucleation in molten steel supersaturated with nitrogen or hydrogen. Metall Mater Trans B, 2017, 48(4): 2136 doi: 10.1007/s11663-017-0993-x
|
[24] |
Liu J H, Li K W, Shen S B, et al. Numerical analysis of bubble growth in a molten steel/(N2, H2) supersaturation system. Chin J Eng, 2016, 38(5): 630劉建華, 李康偉, 沈少波, 等. 鋼液/(N2、H2)過飽和體系中氣泡生長的數值分析. 工程科學學報, 2016, 38(5):630
|
[25] |
Shen Y G, Chen W Q, Ma X J. Comparative study on inclusion removal efficiency in molten steel treated by ultrasonic and argon-blowing. J Univ Sci Technol Beijing, 2010, 32(7): 855 doi: 10.13374/j.issn1001-053x.2010.07.019申永剛, 陳偉慶, 馬新建. 超聲與吹氬處理對鋼液中夾雜物去除效果的對比研究. 北京科技大學學報, 2010, 32(7):855 doi: 10.13374/j.issn1001-053x.2010.07.019
|
[26] |
Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1):79
|
[27] |
Kang S, Shen M. Numerical simulation and cold model experiments on ladle furnace by ultrasonic. Appl Mech Mater, 2014, 633-634: 176 doi: 10.4028/www.scientific.net/AMM.633-634.176
|
[28] |
Duan H J, Ren Y, Zhang L F. Inclusion capture probability prediction model for bubble floatation in turbulent steel flow. Metall Mater Trans B, 2019, 50(1): 16 doi: 10.1007/s11663-018-1462-x
|
[29] |
Furumai K, Murai T, Aramaki N, et al. Effect of gas flow rate, bubble size and inclusion size on inclusion removal under high throughput conditions using water model experiment. Tetsu-to-Hagane, 2017, 103(9): 517 doi: 10.2355/tetsutohagane.TETSU-2017-014
|
[30] |
Geng D Q, Bao J F, Lei H, et al. Physical simulation of inclusion removal by bubble trailing vortex in liquid steel. J Northeast Univ (Nat Sci), 2016, 37(12): 1731 doi: 10.12068/j.issn.1005-3026.2016.12.013耿佃橋, 包金峰, 雷洪, 等. 鋼液內氣泡尾渦去除夾雜物的物理模擬. 東北大學學報(自然科學版), 2016, 37(12):1731 doi: 10.12068/j.issn.1005-3026.2016.12.013
|
[31] |
Wang G C, Zhou H C, Liu F Y, et al. Numerical simulation of bubble formation and motion process in ladle refining. Iron Steel, 2017, 52(5): 24 doi: 10.13228/j.boyuan.issn0449-749x.20160370王國承, 周海忱, 劉發友, 等. 鋼包內氣泡的形成與運動過程的數值模擬. 鋼鐵, 2017, 52(5):24 doi: 10.13228/j.boyuan.issn0449-749x.20160370
|
[32] |
Arai H, Matsumoto K, Shimasaki S I, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
|
[33] |
Mazumdar D, Guthrie R I L. The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int, 1995, 35(1): 1 doi: 10.2355/isijinternational.35.1
|
[34] |
Tang F P, Wang X F, Li Z, et al. Novel concept of cleansing IF molten steel with dispersed in situ phase induced by composite ball explosive reaction in RH ladles. Ironmak Steelmak, 2011, 38(4): 285 doi: 10.1179/1743281210Y.0000000010
|
[35] |
Tang F P, Li Z, Wang X F, et al. Cleaning IF molten steel with dispersed in-situ heterophases induced by the composite sphere explosive reaction in RH ladles. Int J Miner Metall Mater, 2011, 18(2): 144 doi: 10.1007/s12613-011-0414-0
|
[36] |
Wang X F, Yuan S Y, Tang F P, et al. A new approach to inclusion removal using fine gas bubbles during IF steel production. Ironmak Steelmak, 2020, 48(10): 1
|
[37] |
Wang X F, Tang F P, Li Z, et al. Development of a high-efficiency dephosphorization process via the fine in situ phases due to the composite ball explosion. Ironmak Steelmak, 2021, 48(1): 1 doi: 10.1080/03019233.2021.1882647
|
[38] |
Wang X F, Tang F P, Li Z, et al. Desulphurisation with dispersed in situ phases induced by composite ball explosive reaction during ultra-low carbon steel production in RH degasser. Ironmak Steelmak, 2021(2): 1
|
[39] |
Wang X F, Tang F P, Lin Y, et al. Development of novel RH degassing process with powder injection through snorkel nozzles. Ironmak Steelmak, 2014, 41(9): 694 doi: 10.1179/1743281214Y.0000000184
|
[40] |
Wang X F, Tang F P, Yao W Z, et al. Novel concept of fine inclusion removal using carbonate powder injection through the ladle shroud. Ironmak Steelmak, 2019, 46(6): 1
|
[41] |
Turkdogan E T. Novel concept of cleansing liquid steel of solid oxide inclusions by cullet injection in ladle. Ironmak Steelmak, 2004, 31(2): 131 doi: 10.1179/030192304225011061
|
[42] |
Wang X F, Tang F P, Li Z, et al. Technology of inducing dispersed In-situ phase by composite ball explosion reaction. Iron Steel, 2014, 49(10): 18 doi: 10.13228/j.boyuan.issn0449-749x.20130521王曉峰, 唐復平, 李鎮, 等. 反應誘發微小異相凈化鋼水技術. 鋼鐵, 2014, 49(10):18 doi: 10.13228/j.boyuan.issn0449-749x.20130521
|
[43] |
Tang F P, Li Z, Wang X F, et al. Technical investigation on the fine inclusion removal due to the dispersed In-situ phase induced by the composite ball explosion reaction. Iron Steel, 2010, 45(8): 28 doi: 10.13228/j.boyuan.issn0449-749x.2010.08.016唐復平, 李鎮, 王曉峰, 等. 反應誘發微小異相去除鋼液中細小夾雜物技術研究. 鋼鐵, 2010, 45(8):28 doi: 10.13228/j.boyuan.issn0449-749x.2010.08.016
|
[44] |
Li Z, Wang X F, Lin Y, et al. Control of the fine inclusion in IF molten steel. Iron Steel, 2011, 46(11): 26 doi: 10.13228/j.boyuan.issn0449-749x.2011.11.016李鎮, 王曉峰, 林洋, 等. IF鋼中細小夾雜物的控制. 鋼鐵, 2011, 46(11):26 doi: 10.13228/j.boyuan.issn0449-749x.2011.11.016
|
[45] |
Tang F P, Li Z, Wang X F, et al. Purification of liquid steel with fine heterophases induced by explosive reaction in RH ladles. J Univ Sci Technol Beijing, 2009, 31(10): 1235唐復平, 李鎮, 王曉峰, 等. 反應誘發微小異相凈化鋼水. 北京科技大學學報, 2009, 31(10):1235
|