<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于微細異相鋼液潔凈化技術研究進展

王曉峰 栗紅 曹東 康偉 常桂華 鄧志銀 顧超

王曉峰, 栗紅, 曹東, 康偉, 常桂華, 鄧志銀, 顧超. 基于微細異相鋼液潔凈化技術研究進展[J]. 工程科學學報, 2022, 44(9): 1538-1547. doi: 10.13374/j.issn2095-9389.2022.02.14.003
引用本文: 王曉峰, 栗紅, 曹東, 康偉, 常桂華, 鄧志銀, 顧超. 基于微細異相鋼液潔凈化技術研究進展[J]. 工程科學學報, 2022, 44(9): 1538-1547. doi: 10.13374/j.issn2095-9389.2022.02.14.003
WANG Xiao-feng, LI Hong, CAO Dong, KANG Wei, CHANG Gui-hua, DENG Zhi-yin, GU Chao. Progress in cleaning and purification of liquid steel technology based on fine heterogeneous phases[J]. Chinese Journal of Engineering, 2022, 44(9): 1538-1547. doi: 10.13374/j.issn2095-9389.2022.02.14.003
Citation: WANG Xiao-feng, LI Hong, CAO Dong, KANG Wei, CHANG Gui-hua, DENG Zhi-yin, GU Chao. Progress in cleaning and purification of liquid steel technology based on fine heterogeneous phases[J]. Chinese Journal of Engineering, 2022, 44(9): 1538-1547. doi: 10.13374/j.issn2095-9389.2022.02.14.003

基于微細異相鋼液潔凈化技術研究進展

doi: 10.13374/j.issn2095-9389.2022.02.14.003
基金項目: 國家自然科學基金資助項目(52174320);陜西省重點研發計劃資助項目(2020GY-109)
詳細信息
    作者簡介:

    王曉峰,等。 反應誘發微小異相凈化鋼水。 北京科技大學學報,2009,31(10):1235)

    通訊作者:

    E-mail: xfwang@sust.edu.cn

  • 中圖分類號: TG142.71

Progress in cleaning and purification of liquid steel technology based on fine heterogeneous phases

More Information
  • 摘要: 高純凈度鋼的生產是鋼鐵企業面臨的重大課題,在鋼液中獲得尺寸可控、彌散分布的氣泡是去除細小夾雜物、生產高品質鋼的重要手段。微細異相凈化鋼液技術是一種基于碳酸鹽分解反應生產微小氣泡與渣滴去除細小夾雜物的技術,近年來該技術的研發越來越受到冶金工作者的重視,部分新技術已被開發并趨于成熟。本文從微細異相凈化鋼水技術原理出發,詳細介紹了微細異相凈化鋼水技術研究的最新進展,歸納總結了微細異相去除細小夾雜物、脫硫、脫磷、渣料遷移、RH快速脫碳及中間包長水口噴粉工藝特點及作用機理,并對其在工程領域應用亟待解決的問題及未來發展方向進行了展望。

     

  • 圖  1  復合球體爆裂反應生產微小氣泡和渣滴[40]

    Figure  1.  Fine bubbles and slag droplets in molten steel induced by the explosive reaction of the composite sphere[40]

    圖  2  復合球體實物截面圖

    Figure  2.  Cross section of a composite sphere

    圖  3  復合球體在1600 ℃熱爆裂分解反應過程[42]

    Figure  3.  Thermal explosion decomposition process of composite spheres at 1600 °C[42]

    圖  4  復合球體高溫熱爆裂分解反應試驗產物[4344]

    Figure  4.  Products of high temperature thermal burst decomposition reaction of composite spheres[4344]

    圖  5  鑄錠中原位生成微小氣泡的種類.(a)單個氣泡;(b)渣滴與氣泡[43]

    Figure  5.  Fine bubbles due to decomposition reactions in the as-cast ingot: (a) single bubble; (b) bubble and slag droplet[43]

    圖  6  反應生成渣滴捕獲夾雜物上浮過程示意圖(a)及渣滴熔解氧化鋁夾雜后CaO–Al2O3–SiO2渣系過飽和度(b)的變化[40]

    Figure  6.  Schematic showing slag particle capturing inclusion during flotation (a) and change of supersaturation (b) of CaO–Al2O3–SiO2 slag system after slag drop dissolves alumina inclusion[40]

    圖  7  RH精煉加入復合球體示意圖

    Figure  7.  Schematic diagram of RH refining adding composite ball

    圖  8  對比罐次與試驗罐次復合球體處理前后過程與鑄坯試樣全氧變化情況

    Figure  8.  Variation of total oxygen content in process samples and casting bland for compared furnaces and composite ball treated furnaces

    1—T.O. for compared heats after RH out; 2— T.O. for compared heats in tundish; 3—T.O. for compared heats slab

    圖  9  基于微細異相無取向硅鋼脫硫試驗結果.(a)脫硫試驗結果;(b)脫硫率

    Figure  9.  Desulfurization results for nonoriented silicon steel: (a) desulfurization results; (b) desulfurization rate

    圖  10  轉爐出鋼過程加入復合球體

    Figure  10.  Adding composite sphere in tapping process of converter

    圖  11  基于微細異相轉爐爐后快速脫磷試驗結果. (a)脫磷結果;(b)脫磷率

    Figure  11.  Dephosphorization results after composite ball during tapping: (a) dephosphorization results; (b) dephosphorization rate

    圖  12  復合球體處理后鑄坯中全氧的情況

    Figure  12.  T.O in the composite ball treated as-cast and compared heats

    圖  13  RH微細異相脫碳技術示意圖

    Figure  13.  Schematic diagram of RH micro heterogeneous decarburization technology

    圖  14  RH噴吹復合粉劑脫碳處理過程碳含量變化(a)及其對真空下脫碳反應界面(b)的影響

    Figure  14.  Change of carbon content during decarburization treatment of RH injection carbonate powder (a) and its effect on decarburization reaction interface under vacuum (b)

    圖  15  RH提升氣體管路噴吹碳酸鈣粉劑在鋼液中生成的細小氣泡(a)與(b)渣滴

    Figure  15.  Fine bubbles (a) and slag drops (b) generated in molten steel by injecting calcium carbonate powder into RH lifting gas pipeline

    圖  16  中間包長水口噴吹復合粉劑[40]

    Figure  16.  Carbonate powder injection through the ladle shroud in the tundish[40]

    圖  17  中間包噴粉后過程全氧的變化情況

    Figure  17.  Variation of T.O. at different stages after carbonate powder injection through the shroud

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001

    徐匡迪. 關于潔凈鋼的若干基本問題. 金屬學報, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001
    [2] Steneholm K, Andersson N A I, Tilliander A, et al. The role of process control on the steel cleanliness. Ironmak Steelmak, 2018, 45(2): 114 doi: 10.1080/03019233.2016.1245917
    [3] Zhang L F, Ren Q, Duan H J, et al. Modelling of non-metallic inclusions in steel. Miner Process Extr Metall, 2020, 129(2): 184
    [4] Sahai Y. Tundish technology for casting clean steel: A review. Metall Mater Trans B, 2016, 47(4): 2095 doi: 10.1007/s11663-016-0648-3
    [5] Liu W, Yang S F, Li J S. Review of research on inclusion motion behaviors at the steel–slag interface. Chin J Eng, 2021, 43(12): 1647

    劉威, 楊樹峰, 李京社. 鋼–渣界面非金屬夾雜物運動行為研究進展. 工程科學學報, 2021, 43(12):1647
    [6] Kaushik P, Lowry M, Yin H, et al. Inclusion characterisation for clean steelmaking and quality control. Ironmak Steelmak, 2012, 39(4): 284 doi: 10.1179/1743281211Y.0000000069
    [7] Gu C, Wang Z L, Xiao W, et al. Research status and progress on cleanliness of high-fatigue-life bearing steels. Chin J Eng, 2021, 43(3): 299

    顧超, 王仲亮, 肖微, 等. 高疲勞壽命軸承鋼潔凈度現狀及研究進展. 工程科學學報, 2021, 43(3):299
    [8] Liu J H, Zhang J, Li K W. Current state and prospect of technologies for removing inclusion by bubbles. Steelmaking, 2017, 33(2): 1

    劉建華, 張杰, 李康偉. 氣泡去除夾雜物技術研究現狀及發展趨勢. 煉鋼, 2017, 33(2):1
    [9] Xue Z L, Wang Y F, Wang L T, et al. Inclusion removal from molten steel by attachment small bubbles. Acta Met Sin, 2003, 39(4): 431 doi: 10.3321/j.issn:0412-1961.2003.04.019

    薛正良, 王義芳, 王立濤, 等. 用小氣泡從鋼液中去除夾雜物顆粒. 金屬學報, 2003, 39(4):431 doi: 10.3321/j.issn:0412-1961.2003.04.019
    [10] Kaushik P, Lehmann J, Nadif M. State of the art in control of inclusions, their characterization, and future requirements. Metall Mater Trans B, 2012, 43(4): 710 doi: 10.1007/s11663-012-9646-2
    [11] Duan H J, Scheller P R, Ren Y, et al. Fluid flow and inclusion behavior around spherical-cap bubbles. JOM, 2019, 71(1): 69 doi: 10.1007/s11837-018-3193-5
    [12] Lai Q R, Luo Z G, Hou Q F, et al. Numerical study of inclusion removal in steel continuous casting mold considering interactions between bubbles and inclusions. ISIJ Int, 2018, 58(11): 2062 doi: 10.2355/isijinternational.ISIJINT-2018-319
    [13] Zheng X F, Hayes P C, Lee H G. Particle removal from liquid phase using fine gas bubbles. ISIJ Int, 1997, 37(11): 1091 doi: 10.2355/isijinternational.37.1091
    [14] Zeng J, Dai K J, Xue F, et al. Numerical simulation investigation of orthogonal experiment in tundish with bottom gas blowing. Continuous Cast, 2017, 42(4): 6 doi: 10.13228/j.boyuan.issn1005-4006.20170049

    曾俊, 代開舉, 薛飛, 等. 中間包底吹氣正交試驗數值模擬研究. 連鑄, 2017, 42(4):6 doi: 10.13228/j.boyuan.issn1005-4006.20170049
    [15] Yang B, Lei H, Bi Q, et al. Numerical simulation of collision-coalescence and removal of inclusions in a tundish. JOM, 2018, 70(12): 2950 doi: 10.1007/s11837-018-3061-3
    [16] Zhang Q, Wang L, Xu Z. A new method of removing inclusions in molten steel by injecting gas from the shroud. ISIJ Int, 2006, 46(8): 1177 doi: 10.2355/isijinternational.46.1177
    [17] Chang S, Cao X K, Zou Z S. Regimes of micro-bubble formation using gas injection into ladle shroud. Metall Mater Trans B, 2018, 49(3): 953 doi: 10.1007/s11663-018-1231-x
    [18] Tang P, Zhou H, Li J X, et al. Relationship between flow behavior of molten steel and inclusion removal rate in ladle with bottom argon blowing. Chin J Process Eng, 2015, 15(5): 744 doi: 10.12034/j.issn.1009-606X.215264

    唐萍, 周海, 李敬想, 等. 鋼包底吹氬鋼液流動行為與夾雜去除率的關系. 過程工程學報, 2015, 15(5):744 doi: 10.12034/j.issn.1009-606X.215264
    [19] Liu F G, Ren Y, Duan H J, et al. Mathematical simulation and plant trial on soft blowing process of ladle furnace. Steelmaking, 2019, 35(6): 24

    劉風剛, 任英, 段豪劍, 等. 鋼包軟吹過程優化數學模擬和工業試驗研究. 煉鋼, 2019, 35(6):24
    [20] Lou W T, Zhu M Y. Numerical simulations of inclusion behavior and mixing phenomena in gas-stirred ladles with different arrangement of tuyeres. ISIJ Int, 2014, 54(1): 9 doi: 10.2355/isijinternational.54.9
    [21] Zhang J, Liu J H, Yan B J, et al. Study on removing inclusions in silicon manganese deoxidized steel by increasing nitrogen and separating out nitrogen. Chin J Eng, 2018, 40(8): 937

    張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
    [22] Matsuno H, Kikuchi Y, Arai M, et al. Mechanism of deoxidation with degassing of soluble gas from molten steel. Tetsu-to-Hagane, 1999, 85(7): 514 doi: 10.2355/tetsutohagane1955.85.7_514
    [23] Li K W, Liu J H, Zhang J, et al. Theoretical analysis of bubble nucleation in molten steel supersaturated with nitrogen or hydrogen. Metall Mater Trans B, 2017, 48(4): 2136 doi: 10.1007/s11663-017-0993-x
    [24] Liu J H, Li K W, Shen S B, et al. Numerical analysis of bubble growth in a molten steel/(N2, H2) supersaturation system. Chin J Eng, 2016, 38(5): 630

    劉建華, 李康偉, 沈少波, 等. 鋼液/(N2、H2)過飽和體系中氣泡生長的數值分析. 工程科學學報, 2016, 38(5):630
    [25] Shen Y G, Chen W Q, Ma X J. Comparative study on inclusion removal efficiency in molten steel treated by ultrasonic and argon-blowing. J Univ Sci Technol Beijing, 2010, 32(7): 855 doi: 10.13374/j.issn1001-053x.2010.07.019

    申永剛, 陳偉慶, 馬新建. 超聲與吹氬處理對鋼液中夾雜物去除效果的對比研究. 北京科技大學學報, 2010, 32(7):855 doi: 10.13374/j.issn1001-053x.2010.07.019
    [26] Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79

    常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1):79
    [27] Kang S, Shen M. Numerical simulation and cold model experiments on ladle furnace by ultrasonic. Appl Mech Mater, 2014, 633-634: 176 doi: 10.4028/www.scientific.net/AMM.633-634.176
    [28] Duan H J, Ren Y, Zhang L F. Inclusion capture probability prediction model for bubble floatation in turbulent steel flow. Metall Mater Trans B, 2019, 50(1): 16 doi: 10.1007/s11663-018-1462-x
    [29] Furumai K, Murai T, Aramaki N, et al. Effect of gas flow rate, bubble size and inclusion size on inclusion removal under high throughput conditions using water model experiment. Tetsu-to-Hagane, 2017, 103(9): 517 doi: 10.2355/tetsutohagane.TETSU-2017-014
    [30] Geng D Q, Bao J F, Lei H, et al. Physical simulation of inclusion removal by bubble trailing vortex in liquid steel. J Northeast Univ (Nat Sci), 2016, 37(12): 1731 doi: 10.12068/j.issn.1005-3026.2016.12.013

    耿佃橋, 包金峰, 雷洪, 等. 鋼液內氣泡尾渦去除夾雜物的物理模擬. 東北大學學報(自然科學版), 2016, 37(12):1731 doi: 10.12068/j.issn.1005-3026.2016.12.013
    [31] Wang G C, Zhou H C, Liu F Y, et al. Numerical simulation of bubble formation and motion process in ladle refining. Iron Steel, 2017, 52(5): 24 doi: 10.13228/j.boyuan.issn0449-749x.20160370

    王國承, 周海忱, 劉發友, 等. 鋼包內氣泡的形成與運動過程的數值模擬. 鋼鐵, 2017, 52(5):24 doi: 10.13228/j.boyuan.issn0449-749x.20160370
    [32] Arai H, Matsumoto K, Shimasaki S I, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
    [33] Mazumdar D, Guthrie R I L. The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int, 1995, 35(1): 1 doi: 10.2355/isijinternational.35.1
    [34] Tang F P, Wang X F, Li Z, et al. Novel concept of cleansing IF molten steel with dispersed in situ phase induced by composite ball explosive reaction in RH ladles. Ironmak Steelmak, 2011, 38(4): 285 doi: 10.1179/1743281210Y.0000000010
    [35] Tang F P, Li Z, Wang X F, et al. Cleaning IF molten steel with dispersed in-situ heterophases induced by the composite sphere explosive reaction in RH ladles. Int J Miner Metall Mater, 2011, 18(2): 144 doi: 10.1007/s12613-011-0414-0
    [36] Wang X F, Yuan S Y, Tang F P, et al. A new approach to inclusion removal using fine gas bubbles during IF steel production. Ironmak Steelmak, 2020, 48(10): 1
    [37] Wang X F, Tang F P, Li Z, et al. Development of a high-efficiency dephosphorization process via the fine in situ phases due to the composite ball explosion. Ironmak Steelmak, 2021, 48(1): 1 doi: 10.1080/03019233.2021.1882647
    [38] Wang X F, Tang F P, Li Z, et al. Desulphurisation with dispersed in situ phases induced by composite ball explosive reaction during ultra-low carbon steel production in RH degasser. Ironmak Steelmak, 2021(2): 1
    [39] Wang X F, Tang F P, Lin Y, et al. Development of novel RH degassing process with powder injection through snorkel nozzles. Ironmak Steelmak, 2014, 41(9): 694 doi: 10.1179/1743281214Y.0000000184
    [40] Wang X F, Tang F P, Yao W Z, et al. Novel concept of fine inclusion removal using carbonate powder injection through the ladle shroud. Ironmak Steelmak, 2019, 46(6): 1
    [41] Turkdogan E T. Novel concept of cleansing liquid steel of solid oxide inclusions by cullet injection in ladle. Ironmak Steelmak, 2004, 31(2): 131 doi: 10.1179/030192304225011061
    [42] Wang X F, Tang F P, Li Z, et al. Technology of inducing dispersed In-situ phase by composite ball explosion reaction. Iron Steel, 2014, 49(10): 18 doi: 10.13228/j.boyuan.issn0449-749x.20130521

    王曉峰, 唐復平, 李鎮, 等. 反應誘發微小異相凈化鋼水技術. 鋼鐵, 2014, 49(10):18 doi: 10.13228/j.boyuan.issn0449-749x.20130521
    [43] Tang F P, Li Z, Wang X F, et al. Technical investigation on the fine inclusion removal due to the dispersed In-situ phase induced by the composite ball explosion reaction. Iron Steel, 2010, 45(8): 28 doi: 10.13228/j.boyuan.issn0449-749x.2010.08.016

    唐復平, 李鎮, 王曉峰, 等. 反應誘發微小異相去除鋼液中細小夾雜物技術研究. 鋼鐵, 2010, 45(8):28 doi: 10.13228/j.boyuan.issn0449-749x.2010.08.016
    [44] Li Z, Wang X F, Lin Y, et al. Control of the fine inclusion in IF molten steel. Iron Steel, 2011, 46(11): 26 doi: 10.13228/j.boyuan.issn0449-749x.2011.11.016

    李鎮, 王曉峰, 林洋, 等. IF鋼中細小夾雜物的控制. 鋼鐵, 2011, 46(11):26 doi: 10.13228/j.boyuan.issn0449-749x.2011.11.016
    [45] Tang F P, Li Z, Wang X F, et al. Purification of liquid steel with fine heterophases induced by explosive reaction in RH ladles. J Univ Sci Technol Beijing, 2009, 31(10): 1235

    唐復平, 李鎮, 王曉峰, 等. 反應誘發微小異相凈化鋼水. 北京科技大學學報, 2009, 31(10):1235
  • 加載中
圖(17)
計量
  • 文章訪問數:  2379
  • HTML全文瀏覽量:  288
  • PDF下載量:  74
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-14
  • 網絡出版日期:  2022-06-22
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回