Bearing characteristics of pile–bucket composite foundations for offshore wind turbines
-
摘要: 基于有限元軟件ABAQUS平臺,建立了非勻質飽和黏土場地的海上風電樁–筒復合基礎數值計算模型,對比研究豎向荷載V、水平荷載H和彎矩荷載M作用下不同筒結構尺寸的樁–筒復合基礎的承載力系數,并采用正交試驗法開展樁–筒復合基礎的各向承載性能的影響因素研究。結果表明,飽和黏土的非勻質特性系數K對豎向承載力系數NcV影響較小;K對水平承載力系數NcH和抗彎承載力系數NcM的影響呈指數型遞減。筒結構直徑D和入土深度L對各向承載力系數的影響存在交互作用。D對樁–筒復合基礎承載力系數的影響最大,可以通過增加筒結構直徑從而有效地提高樁–筒復合基礎的承載性能。研究結果為海上風電樁–筒復合基礎的設計提供了依據。Abstract: Offshore wind power has been the fastest-growing form of renewable energy for the last few years, owing to its effectiveness in achieving carbon neutrality through a reasonable and efficient utilization of wind power resources. With offshore wind farms gradually developing into the deep and far sea, greater attention is paid to the bearing characteristics of foundations for offshore wind turbines. Therefore, it becomes significantly important to explore new foundations, effectively promoting the development of offshore wind power. Numerous researchers have substantially investigated novel foundations for offshore wind turbines to help with offshore wind farm construction. Compared to other foundations, the pile–bucket composite foundation has obvious advantages in terms of bearing performance. In this paper, a series of numerical calculation models for pile–bucket composite foundations in heterogeneous saturated clay are established using the finite element software ABAQUS. Additionally, the undrained shear strength changes with depth are examined via field variables to explain soil heterogeneity in the finite element model. Next, the displacement control method is adopted to apply the vertical loading V, horizontal loading H, and bending moment M at the top of the foundation. Simultaneously, the ultimate bearing capacity of the foundations is obtained by the double tangent method, and the bearing capacity factors of each load direction are obtained by normalizing the ultimate bearing capacity in different calculations. To obtain the preliminary design method for the size of pile–bucket composite foundation, the priority of influencing factors is studied through the orthogonal test. The results show that the saturated clay coefficient K has a nominal effect on the vertical bearing capacity coefficient NcV. When K is different, NcV remains almost unchanged for a certain foundation. Concerning the impact of bucket shapes on the bearing capacity coefficient in three directions, great interaction is observed between the diameter D and the buried depth L of the bucket structure. The diameter of the bucket has the greatest influence on the bearing characteristics of the pile–bucket composite foundations, wherein increasing the former can significantly improve the latter. The research results provide a reference for the design of the pile–bucket composite foundation of an offshore wind turbine.
-
表 1 飽和黏土非勻質特性
Table 1. Inhomogeneous characteristics of saturated clay
K = kD/Sum Sum / kPa k / (kPa·m–1) 2 6.25 1.25 4 3.25 1.3 6 2 1.2 10 1.25 1.25 30 0.4 1.2 表 2 荷載及位移符號規定
Table 2. Sign conventions for loads and displacements
Parameter Vertical
loadingHorizontal
loadingBending
momentLoading V H M Ultimate bearing capacity Vult Hult Mult Bearing capacity
factorNcV = Vult/ASu0 NcH = Hult/ASu0 NcM = Mult/ADSu0 Displacement v h θ 表 3 因素水平表
Table 3. Factors and levels
Levels d / m l / m D / m L / m K 1 5 25 10 2 2 2 6 30 15 6 4 3 7 35 20 10 6 4 8 40 25 14 8 表 4 正交試驗方案及結果
Table 4. Orthogonal scheme and results
Case d / m l / m D / m L / m K NcH NcV NcM 1 5 25 10 2 2 6.94 11.27 1.13 2 5 30 15 6 4 3.67 7.21 0.48 3 5 35 20 10 6 3.50 7.31 0.37 4 5 40 25 14 8 3.44 8.24 0.33 5 6 25 15 10 8 5.10 10.75 0.72 6 6 30 10 14 6 10.02 16.46 1.65 7 6 35 25 2 4 1.89 4.16 0.17 8 6 40 20 6 2 3.76 7.17 0.36 9 7 25 20 14 4 4.35 10.80 0.54 10 7 30 25 10 2 3.65 8.44 0.34 11 7 35 10 6 8 10.26 18.29 1.83 12 7 40 15 2 6 5.35 9.83 0.66 13 8 25 25 6 6 2.80 7.09 0.28 14 8 30 20 2 8 3.09 6.85 0.34 15 8 35 15 14 2 7.69 12.86 0.86 16 8 40 10 10 4 12.18 21.36 2.14 表 5 水平承載力系數NcH極差分析
Table 5. Range analysis of NcH
Coefficient d / m l / m D / m L / m K NcH(1) 17.68 19.26 39.57 17.49 22.13 NcH(2) 20.73 20.48 21.99 20.55 22.15 NcH(3) 23.79 23.41 14.71 24.48 21.84 NcH(4) 25.85 24.91 11.79 25.53 21.93 R of NcH 8.18 5.65 27.78 8.03 0.32 Priority of factors D>d>L>l>K 表 6 豎向承載力系數NcV極差分析
Table 6. Range analysis of NcV
Coefficient d / m l / m D / m L / m K NcV(1) 34.66 40.32 67.70 32.11 40.41 NcV(2) 39.26 39.55 41.46 40.32 43.63 NcV(3) 47.40 43.33 32.54 48.51 41.54 NcV(4) 48.79 46.90 28.40 49.16 44.52 R of NcV 14.13 7.36 39.29 17.05 4.12 Priority of factors D>L>d>l>K 表 7 抗彎承載力系數NcM極差分析
Table 7. Range analysis of NcM
Coefficient d / m l / m D / m L / m K NcM(1) 28.25 24.91 104.27 30.94 35.60 NcM(2) 36.86 35.04 36.70 42.98 49.91 NcM(3) 46.74 49.12 17.33 52.80 40.97 NcM(4) 57.82 60.59 11.38 42.96 43.19 R of NcM 29.57 35.67 92.89 21.86 14.31 Priority of factors D>l>d>L>K www.77susu.com -
參考文獻
[1] Sun X J, Huang D G, Wu Jpomg Q. The Current state of offshore wind energy technology development. Energy, 2012, 41(1): 298 doi: 10.1016/j.energy.2012.02.054 [2] Zou C N, Xiong B, Xue H Q, et al. The role of new energy in carbon neutral. Petroleum Explor Dev, 2021, 48(2): 480 doi: 10.1016/S1876-3804(21)60039-3 [3] Esteban M D, Diez J J, López J S, et al. Why offshore wind energy? Renew Energy, 2011, 36(2): 444 [4] Díaz H, Soares C G. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng, 2020, 209: 107381 doi: 10.1016/j.oceaneng.2020.107381 [5] Veers P, Dykes K, Lantz E, et al. Grand challenges in the science of wind energy. Science, 2019, 366(6464): eaau2027 doi: 10.1126/science.aau2027 [6] Desmond C, Murphy J, Blonk L, et al. Description of an 8 MW reference wind turbine. J Phys:Conf Ser, 2016, 753: 092013 doi: 10.1088/1742-6596/753/9/092013 [7] Kong D S, Liu Y, Deng M X, et al. Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil. Chin J Eng, 2021, 43(5): 710孔德森, 劉一, 鄧美旭, 等. 非均質土中海上風電單樁基礎動力響應特性. 工程科學學報, 2021, 43(5):710 [8] Song B, Zhao W N, Shuang M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action. Chin J Eng, 2019, 41(10): 1351宋波, 趙偉娜, 雙妙. 沖刷深度對海上風電塔地震動力響應的影響分析. 工程科學學報, 2019, 41(10):1351 [9] Faizi K, Faramarzi A, Dirar S, et al. Investigating the monotonic behaviour of hybrid tripod suction bucket foundations for offshore wind towers in sand. Appl Ocean Res, 2019, 89: 176 doi: 10.1016/j.apor.2019.05.018 [10] Yang Q, Yu P, Liu Y F, et al. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng, 2020, 202: 106701 doi: 10.1016/j.oceaneng.2019.106701 [11] Li H J, Liu H J, Liu S Y. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Geomech Energy Environ, 2017, 10: 12 doi: 10.1016/j.gete.2017.05.002 [12] Wang X F, Zeng X W, Yang X, et al. Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Appl Energy, 2018, 209: 127 doi: 10.1016/j.apenergy.2017.10.107 [13] Zhu D J. Research of a New Type of Foundation for Offshore Wind Turbines with the Combining of Monoplie Foundation and Bucket Foundation [Dissertation]. Tianjin: Tianjin University, 2012朱東劍. 筒型基礎與單樁相結合的新型復合風電基礎研究[學位論文]. 天津: 天津大學, 2012 [14] Liu R, Li B R, Lian J J, et al. Bearing characteristics of pile–bucket composite foundation for offshore wind turbine. J Tianjin Univ (Sci Technol) , 2015, 48(5): 429劉潤, 李寶仁, 練繼建, 等. 海上風電單樁復合筒型基礎樁筒共同承載機制研究. 天津大學學報(自然科學與工程技術版), 2015, 48(5):429 [15] Liu R, Qi Y, Li B R, et al. Failure envelopes of single-pile composite bucket foundation of offshore wind turbine under combined loading conditions. Rock Soil Mech, 2016, 37(5): 1486 doi: 10.16285/j.rsm.2016.05.033劉潤, 祁越, 李寶仁, 等. 復合加載模式下單樁復合筒型基礎地基承載力包絡線研究. 巖土力學, 2016, 37(5):1486 doi: 10.16285/j.rsm.2016.05.033 [16] Wang J Y, Sun G D, Chen G S, et al. Finite element analyses of improved lateral performance of monopile when combined with bucket foundation for offshore wind turbines. Appl Ocean Res, 2021, 111: 102647 doi: 10.1016/j.apor.2021.102647 [17] Chen D, Gao P, Huang S S, et al. Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines. Mar Struct, 2020, 71: 102727 doi: 10.1016/j.marstruc.2020.102727 [18] Liu H J, Zhang P, Wang Q D, et al. Optimum structural design and loading advantage analysis of pile–bucket foundation. J Harbin Eng Univ, 2018, 39(7): 1165 doi: 10.11990/jheu.201701022劉紅軍, 張鵬, 王荃迪, 等. 樁筒復合基礎筒體結構優化及承載性能分析. 哈爾濱工程大學學報, 2018, 39(7):1165 doi: 10.11990/jheu.201701022 [19] Li X Y, Zeng X W, Wang X F. Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Eng, 2020, 204: 107276 doi: 10.1016/j.oceaneng.2020.107276 [20] Mehravar M, Harireche O, Faramarzi A. Evaluation of undrained failure envelopes of caisson foundations under combined loading. Appl Ocean Res, 2016, 59: 129 doi: 10.1016/j.apor.2016.05.001 [21] Hung L C, Kim S R. Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay. Ocean Eng, 2014, 85: 100 doi: 10.1016/j.oceaneng.2014.04.025 [22] Yun G, Bransby M F. The horizontal-moment capacity of embedded foundations in undrained soil. Can Geotech J, 2007, 44(4): 409 doi: 10.1139/t06-126 [23] Hung L C, Kim S R. Evaluation of undrained bearing capacities of bucket foundations under combined loads. Mar Georesources Geotechnol, 2014, 32(1): 76 doi: 10.1080/1064119X.2012.735346 [24] Xiao Z, Wang Y, Wang Y Z, et al. Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance. Rock Soil Mech, 2018, 39(10): 3603 doi: 10.16285/j.rsm.2017.2277肖忠, 王琰, 王元戰, 等. 桶間距對四桶吸力式基礎各單向承載力的影響及最優間距的確定. 巖土力學, 2018, 39(10):3603 doi: 10.16285/j.rsm.2017.2277 [25] Hung L C, Kim S R. Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay. Ocean Eng, 2012, 52: 75 doi: 10.1016/j.oceaneng.2012.06.001 [26] Butterfield R, Houlsby G T, Gottardi G. Standardized sign conventions and notation for generally loaded foundations. Géotechnique, 1997, 47(5): 1051 [27] Byrne B W, Cassidy M J. Investigating the response of offshore foundations in soft clay soils // Proceedings of ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, 2009: 263 [28] Ren L Q. Experimental Design and Optimization. Beijing: Science Press, 2009任露泉. 試驗設計及其優化. 北京: 科學出版社, 2009 -