<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

海上風電樁–筒復合基礎承載性能研究

孫艷國 許成順 杜修力 王丕光 席仁強 孫毅龍

孫艷國, 許成順, 杜修力, 王丕光, 席仁強, 孫毅龍. 海上風電樁–筒復合基礎承載性能研究[J]. 工程科學學報, 2023, 45(3): 489-498. doi: 10.13374/j.issn2095-9389.2022.02.11.001
引用本文: 孫艷國, 許成順, 杜修力, 王丕光, 席仁強, 孫毅龍. 海上風電樁–筒復合基礎承載性能研究[J]. 工程科學學報, 2023, 45(3): 489-498. doi: 10.13374/j.issn2095-9389.2022.02.11.001
SUN Yan-guo, XU Cheng-shun, DU Xiu-li, WANG Pi-guang, XI Ren-qiang, SUN Yi-long. Bearing characteristics of pile–bucket composite foundations for offshore wind turbines[J]. Chinese Journal of Engineering, 2023, 45(3): 489-498. doi: 10.13374/j.issn2095-9389.2022.02.11.001
Citation: SUN Yan-guo, XU Cheng-shun, DU Xiu-li, WANG Pi-guang, XI Ren-qiang, SUN Yi-long. Bearing characteristics of pile–bucket composite foundations for offshore wind turbines[J]. Chinese Journal of Engineering, 2023, 45(3): 489-498. doi: 10.13374/j.issn2095-9389.2022.02.11.001

海上風電樁–筒復合基礎承載性能研究

doi: 10.13374/j.issn2095-9389.2022.02.11.001
基金項目: 國家自然科學基金優秀青年基金資助項目(51722801)
詳細信息
    通訊作者:

    E-mail: xuchengshun@bjut.edu.cn

  • 中圖分類號: TU47

Bearing characteristics of pile–bucket composite foundations for offshore wind turbines

More Information
  • 摘要: 基于有限元軟件ABAQUS平臺,建立了非勻質飽和黏土場地的海上風電樁–筒復合基礎數值計算模型,對比研究豎向荷載V、水平荷載H和彎矩荷載M作用下不同筒結構尺寸的樁–筒復合基礎的承載力系數,并采用正交試驗法開展樁–筒復合基礎的各向承載性能的影響因素研究。結果表明,飽和黏土的非勻質特性系數K對豎向承載力系數NcV影響較小;K對水平承載力系數NcH和抗彎承載力系數NcM的影響呈指數型遞減。筒結構直徑D和入土深度L對各向承載力系數的影響存在交互作用。D對樁–筒復合基礎承載力系數的影響最大,可以通過增加筒結構直徑從而有效地提高樁–筒復合基礎的承載性能。研究結果為海上風電樁–筒復合基礎的設計提供了依據。

     

  • 圖  1  有限元模型驗證

    Figure  1.  Validation of the model

    圖  2  樁–筒復合基礎形狀、荷載加載條件及土體條件

    Figure  2.  Pile–bucket composite foundation geometry, load conventions, and saturated clay conditions

    圖  3  有限元計算模型

    Figure  3.  Finite element model

    圖  4  極限承載力確定

    Figure  4.  Determination of the ultimate bearing capacity

    圖  5  樁–筒復合基礎水平承載系數NcHK之間的關系. (a) D = 10 m; (b) D = 15 m; (c) D = 20 m

    Figure  5.  Horizontal bearing capacity factors of the pile–bucket composite foundations (NcH) with K: (a) D=10 m; (b) D=15 m; (c) D=20 m

    圖  6  樁–筒復合基礎水平承載系數NcHD(a)和L(b)的關系

    Figure  6.  Horizontal bearing capacity factors of the pile–bucket composite foundations (NcH) with D(a) and L(b)

    圖  7  DL對水平承載特性的影響

    Figure  7.  Effect of D and L on the horizontal bearing capacity factors

    圖  8  樁–筒復合基礎豎向承載系數NcVK之間的關系. (a) D = 10 m; (b) D = 15 m; (c) D = 20 m

    Figure  8.  Vertical bearing capacity factors of the pile–bucket composite foundations (NcV) with K: (a) D = 10 m; (b) D = 15 m; (c) D = 20 m

    圖  9  豎向加載極限狀態基礎等效塑性應變云圖(a)和位移矢量圖(b)(D20L10K2-V)

    Figure  9.  Equivalent plastic strain distribution (a) and displacement vector diagram (b) under the ultimate vertical bearing state

    圖  10  樁–筒復合基礎豎向承載系數NcVD (a)和L (b)的關系

    Figure  10.  Vertical bearing capacity factors of the pile–bucket composite foundations (NcV) with D (a) and L (b)

    圖  11  DL對豎向承載特性的影響

    Figure  11.  Effect of D and L on vertical bearing capacity factors of pile–bucket composite foundations

    圖  12  樁–筒復合基礎抗彎承載系數NcMK之間的關系. (a) D = 10 m; (b) D = 15 m; (c) D = 20 m

    Figure  12.  Moment bearing capacity factors of the pile–bucket composite foundations with K: (a) D = 10 m; (b) D = 15 m; (c) D = 20 m

    圖  13  公式(7)中的系數. (a) f; (b) g

    Figure  13.  Coefficients in Equation (7): (a) f; (b) g

    圖  14  樁–筒復合基礎抗彎承載力系數NcMD (a)和L (b)的關系

    Figure  14.  Moment bearing capacity factors of the pile–bucket composite foundations with D (a) and L (b)

    圖  15  DL對抗彎承載特性的影響

    Figure  15.  Effect of D and L on the moment bearing capacity factors of the pile–bucket composite foundations

    表  1  飽和黏土非勻質特性

    Table  1.   Inhomogeneous characteristics of saturated clay

    K = kD/SumSum / kPak / (kPa·m–1)
    26.251.25
    43.251.3
    621.2
    101.251.25
    300.41.2
    下載: 導出CSV

    表  2  荷載及位移符號規定

    Table  2.   Sign conventions for loads and displacements

    ParameterVertical
    loading
    Horizontal
    loading
    Bending
    moment
    LoadingVHM
    Ultimate bearing capacityVultHultMult
    Bearing capacity
    factor
    NcV = Vult/ASu0NcH = Hult/ASu0NcM = Mult/ADSu0
    Displacementvhθ
    下載: 導出CSV

    表  3  因素水平表

    Table  3.   Factors and levels

    Levelsd / ml / mD / mL / mK
    15251022
    26301564
    373520106
    484025148
    下載: 導出CSV

    表  4  正交試驗方案及結果

    Table  4.   Orthogonal scheme and results

    Cased / ml / mD / mL / mKNcHNcVNcM
    152510226.9411.271.13
    253015643.677.210.48
    3535201063.507.310.37
    4540251483.448.240.33
    5625151085.1010.750.72
    66301014610.0216.461.65
    763525241.894.160.17
    864020623.767.170.36
    9725201444.3510.800.54
    10730251023.658.440.34
    11735106810.2618.291.83
    1274015265.359.830.66
    1382525662.807.090.28
    1483020283.096.850.34
    15835151427.6912.860.86
    168401010412.1821.362.14
    下載: 導出CSV

    表  5  水平承載力系數NcH極差分析

    Table  5.   Range analysis of NcH

    Coefficientd / ml / mD / mL / mK
    NcH(1)17.6819.2639.5717.4922.13
    NcH(2)20.7320.4821.9920.5522.15
    NcH(3)23.7923.4114.7124.4821.84
    NcH(4)25.8524.9111.7925.5321.93
    R of NcH8.185.6527.788.030.32
    Priority of factorsD>d>L>l>K
    下載: 導出CSV

    表  6  豎向承載力系數NcV極差分析

    Table  6.   Range analysis of NcV

    Coefficientd / ml / mD / mL / mK
    NcV(1)34.6640.3267.7032.1140.41
    NcV(2)39.2639.5541.4640.3243.63
    NcV(3)47.4043.3332.5448.5141.54
    NcV(4)48.7946.9028.4049.1644.52
    R of NcV14.137.3639.2917.054.12
    Priority of factorsD>L>d>l>K
    下載: 導出CSV

    表  7  抗彎承載力系數NcM極差分析

    Table  7.   Range analysis of NcM

    Coefficientd / ml / mD / mL / mK
    NcM(1)28.2524.91104.2730.9435.60
    NcM(2)36.8635.0436.7042.9849.91
    NcM(3)46.7449.1217.3352.8040.97
    NcM(4)57.8260.5911.3842.9643.19
    R of NcM29.5735.6792.8921.8614.31
    Priority of factorsD>l>d>L>K
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Sun X J, Huang D G, Wu Jpomg Q. The Current state of offshore wind energy technology development. Energy, 2012, 41(1): 298 doi: 10.1016/j.energy.2012.02.054
    [2] Zou C N, Xiong B, Xue H Q, et al. The role of new energy in carbon neutral. Petroleum Explor Dev, 2021, 48(2): 480 doi: 10.1016/S1876-3804(21)60039-3
    [3] Esteban M D, Diez J J, López J S, et al. Why offshore wind energy? Renew Energy, 2011, 36(2): 444
    [4] Díaz H, Soares C G. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng, 2020, 209: 107381 doi: 10.1016/j.oceaneng.2020.107381
    [5] Veers P, Dykes K, Lantz E, et al. Grand challenges in the science of wind energy. Science, 2019, 366(6464): eaau2027 doi: 10.1126/science.aau2027
    [6] Desmond C, Murphy J, Blonk L, et al. Description of an 8 MW reference wind turbine. J Phys:Conf Ser, 2016, 753: 092013 doi: 10.1088/1742-6596/753/9/092013
    [7] Kong D S, Liu Y, Deng M X, et al. Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil. Chin J Eng, 2021, 43(5): 710

    孔德森, 劉一, 鄧美旭, 等. 非均質土中海上風電單樁基礎動力響應特性. 工程科學學報, 2021, 43(5):710
    [8] Song B, Zhao W N, Shuang M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action. Chin J Eng, 2019, 41(10): 1351

    宋波, 趙偉娜, 雙妙. 沖刷深度對海上風電塔地震動力響應的影響分析. 工程科學學報, 2019, 41(10):1351
    [9] Faizi K, Faramarzi A, Dirar S, et al. Investigating the monotonic behaviour of hybrid tripod suction bucket foundations for offshore wind towers in sand. Appl Ocean Res, 2019, 89: 176 doi: 10.1016/j.apor.2019.05.018
    [10] Yang Q, Yu P, Liu Y F, et al. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng, 2020, 202: 106701 doi: 10.1016/j.oceaneng.2019.106701
    [11] Li H J, Liu H J, Liu S Y. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Geomech Energy Environ, 2017, 10: 12 doi: 10.1016/j.gete.2017.05.002
    [12] Wang X F, Zeng X W, Yang X, et al. Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Appl Energy, 2018, 209: 127 doi: 10.1016/j.apenergy.2017.10.107
    [13] Zhu D J. Research of a New Type of Foundation for Offshore Wind Turbines with the Combining of Monoplie Foundation and Bucket Foundation [Dissertation]. Tianjin: Tianjin University, 2012

    朱東劍. 筒型基礎與單樁相結合的新型復合風電基礎研究[學位論文]. 天津: 天津大學, 2012
    [14] Liu R, Li B R, Lian J J, et al. Bearing characteristics of pile–bucket composite foundation for offshore wind turbine. J Tianjin Univ (Sci Technol), 2015, 48(5): 429

    劉潤, 李寶仁, 練繼建, 等. 海上風電單樁復合筒型基礎樁筒共同承載機制研究. 天津大學學報(自然科學與工程技術版), 2015, 48(5):429
    [15] Liu R, Qi Y, Li B R, et al. Failure envelopes of single-pile composite bucket foundation of offshore wind turbine under combined loading conditions. Rock Soil Mech, 2016, 37(5): 1486 doi: 10.16285/j.rsm.2016.05.033

    劉潤, 祁越, 李寶仁, 等. 復合加載模式下單樁復合筒型基礎地基承載力包絡線研究. 巖土力學, 2016, 37(5):1486 doi: 10.16285/j.rsm.2016.05.033
    [16] Wang J Y, Sun G D, Chen G S, et al. Finite element analyses of improved lateral performance of monopile when combined with bucket foundation for offshore wind turbines. Appl Ocean Res, 2021, 111: 102647 doi: 10.1016/j.apor.2021.102647
    [17] Chen D, Gao P, Huang S S, et al. Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines. Mar Struct, 2020, 71: 102727 doi: 10.1016/j.marstruc.2020.102727
    [18] Liu H J, Zhang P, Wang Q D, et al. Optimum structural design and loading advantage analysis of pile–bucket foundation. J Harbin Eng Univ, 2018, 39(7): 1165 doi: 10.11990/jheu.201701022

    劉紅軍, 張鵬, 王荃迪, 等. 樁筒復合基礎筒體結構優化及承載性能分析. 哈爾濱工程大學學報, 2018, 39(7):1165 doi: 10.11990/jheu.201701022
    [19] Li X Y, Zeng X W, Wang X F. Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Eng, 2020, 204: 107276 doi: 10.1016/j.oceaneng.2020.107276
    [20] Mehravar M, Harireche O, Faramarzi A. Evaluation of undrained failure envelopes of caisson foundations under combined loading. Appl Ocean Res, 2016, 59: 129 doi: 10.1016/j.apor.2016.05.001
    [21] Hung L C, Kim S R. Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay. Ocean Eng, 2014, 85: 100 doi: 10.1016/j.oceaneng.2014.04.025
    [22] Yun G, Bransby M F. The horizontal-moment capacity of embedded foundations in undrained soil. Can Geotech J, 2007, 44(4): 409 doi: 10.1139/t06-126
    [23] Hung L C, Kim S R. Evaluation of undrained bearing capacities of bucket foundations under combined loads. Mar Georesources Geotechnol, 2014, 32(1): 76 doi: 10.1080/1064119X.2012.735346
    [24] Xiao Z, Wang Y, Wang Y Z, et al. Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance. Rock Soil Mech, 2018, 39(10): 3603 doi: 10.16285/j.rsm.2017.2277

    肖忠, 王琰, 王元戰, 等. 桶間距對四桶吸力式基礎各單向承載力的影響及最優間距的確定. 巖土力學, 2018, 39(10):3603 doi: 10.16285/j.rsm.2017.2277
    [25] Hung L C, Kim S R. Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay. Ocean Eng, 2012, 52: 75 doi: 10.1016/j.oceaneng.2012.06.001
    [26] Butterfield R, Houlsby G T, Gottardi G. Standardized sign conventions and notation for generally loaded foundations. Géotechnique, 1997, 47(5): 1051
    [27] Byrne B W, Cassidy M J. Investigating the response of offshore foundations in soft clay soils // Proceedings of ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, 2009: 263
    [28] Ren L Q. Experimental Design and Optimization. Beijing: Science Press, 2009

    任露泉. 試驗設計及其優化. 北京: 科學出版社, 2009
  • 加載中
圖(15) / 表(7)
計量
  • 文章訪問數:  454
  • HTML全文瀏覽量:  205
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-11
  • 網絡出版日期:  2022-11-04
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回