<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不銹鋼渣高溫改性?析晶調控解毒研究現狀及發展趨勢

張鑫 張梅 郭敏

張鑫, 張梅, 郭敏. 不銹鋼渣高溫改性?析晶調控解毒研究現狀及發展趨勢[J]. 工程科學學報, 2023, 45(4): 577-589. doi: 10.13374/j.issn2095-9389.2022.02.10.003
引用本文: 張鑫, 張梅, 郭敏. 不銹鋼渣高溫改性?析晶調控解毒研究現狀及發展趨勢[J]. 工程科學學報, 2023, 45(4): 577-589. doi: 10.13374/j.issn2095-9389.2022.02.10.003
ZHANG Xin, ZHANG Mei, GUO Min. Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag[J]. Chinese Journal of Engineering, 2023, 45(4): 577-589. doi: 10.13374/j.issn2095-9389.2022.02.10.003
Citation: ZHANG Xin, ZHANG Mei, GUO Min. Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag[J]. Chinese Journal of Engineering, 2023, 45(4): 577-589. doi: 10.13374/j.issn2095-9389.2022.02.10.003

不銹鋼渣高溫改性?析晶調控解毒研究現狀及發展趨勢

doi: 10.13374/j.issn2095-9389.2022.02.10.003
基金項目: 國家重點研發計劃資助項目(2020YFB0606205)
詳細信息
    通訊作者:

    E-mail: guomin@ustb.edu.cn

  • 中圖分類號: TG142.71

Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag

More Information
  • 摘要: 截止到目前,鋼鐵工業普通固廢(高爐鐵渣)循環利用技術取得了重要進展,但仍存在固廢頑疾亟需處理。不銹鋼冶煉產生的含鉻(Cr)渣長期以來缺乏有效的無害化處置方法,環境隱患巨大。國內外專家學者通過添加還原物質、高溫調質及調節冷卻方式等以改變渣中鉻元素的賦存狀態,控制Cr6+的溶出,進而實現不銹鋼渣的解毒。其中,高溫改性?析晶調控方法可以通過調整鋼渣組分和控制溫度制度促進含鉻尖晶石相的形成和長大,提高鉻元素在尖晶石相中的富集程度,有望成為最有效且安全的無害化處理技術,在近些年得到快速發展。本文從不銹鋼渣高溫改性?析晶調控解毒的熱力學機理和結晶動力學原理出發,針對不銹鋼渣的高溫調質改性、解毒方面的研究進展進行了綜述。基于高溫調質?選擇性析晶的核心問題,重點闡述了改善解毒效果的方法和措施。另外,針對不銹鋼渣高溫改性?析晶調控解毒存在的問題提出了今后的發展方向。

     

  • 圖  1  生成二元復合氧化物反應的標準吉布斯自由能變隨溫度的變化曲線[29-32]

    Figure  1.  Standard Gibbs free energy variation curve with temperature for the formation of binary composite oxides[29-32]

    圖  2  尖晶石晶體生長過程中熔體中溶質原子的濃度分布[55]

    Figure  2.  Concentration distribution of the solute atoms in slag during spinel crystal growth[55]

    圖  3  3種冷卻模式下含鉻尖晶石尺寸的增長和EDS分析[59]

    Figure  3.  Cr-bearing spinel growth and EDS analysis under three cooling modes[59]

    表  1  EAF渣和AOD渣的主要化學成分(質量分數)[18-24]

    Table  1.   Main chemical compositions and contents of EAF and AOD slags (mass fraction)[18-24] %

    SlagCaOSiO2MgOFetOCr2O3Al2O3MnOB
    EAF Slag38.64?50.3924.01?34.734.80?12.630.54?4.302.92?6.402.30?9.550.20?6.001.20?1.76
    AOD Slag54.10?66.1024.67?26.502.06?6.300.20?1.810.25?1.831.07?4.910.16?1.022.04?2.49
    下載: 導出CSV

    表  2  EAF渣和AOD渣的主要礦相組成及Cr的賦存形式[18-24]

    Table  2.   Main mineral compositions of EAF/AOD slags and the existence form of Cr[18-24]

    SlagMain mineral phaseOther mineral phasesCr-containing phase
    EAF slagCa2SiO4, Ca3MgSi2O8Ca2(Al,Mg)[(Si,Al)SiO7], Al2SiO5, Fe3O4, (Fe,Mg)(Fe,Cr,Al)2O4,
    Cr2O3, CaCr2O4, CaCrO4
    (Fe,Mg)(Fe,Cr,Al)2O4,
    Cr2O3, CaCr2O4, CaCrO4
    AOD slagCa2SiO4,Ca3MgSi2O8(Fe,Mg)(Fe,Cr,Al)2O4, MgO, Fe-Cr-Ni(Fe,Mg)(Fe,Cr,Al)2O4, MgO, Fe-Cr-Ni
    下載: 導出CSV

    表  3  不銹鋼渣生成二元復合氧化物的化學反應方程及熱力學數據[29-32]

    Table  3.   Chemical reaction equations and thermodynamic data of slag[29-32]

    Chemical reaction equationStandard reaction Gibbs free energy variation/ (J·mol?1)
    $ \left( {{\text{FeO}}} \right){\text{ + }}\left( {{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ = FeA}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}}= - 144225 + 53.847T$
    $ \left( {{\text{FeO}}} \right){\text{ + }}\left( {{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ = FeC}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - 204144 + 76.479T$
    $ \left( {{\text{MgO}}} \right){\text{ + }}\left( {{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ = MgA}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - 224507 + 70.710T$
    $ \left( {{\text{MgO}}} \right){\text{ + }}\left( {{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ = MgC}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - 250426 + 82.002T$
    $ \left( {{\text{CaO}}} \right){\text{ + }}\left( {{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ = CaC}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - {\text{256506} } + {\text{82} }{\text{.002} }T$
    $ \left( {{\text{CaO}}} \right){\text{ + }}\left( {{\text{Si}}{{\text{O}}_{\text{2}}}} \right){\text{ = CaSi}}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - {\text{181562} } + {\text{32} }{\text{.136} }T$
    $ {\text{2}}\left( {{\text{CaO}}} \right){\text{ + }}\left( {{\text{Si}}{{\text{O}}_{\text{2}}}} \right){\text{ = C}}{{\text{a}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - {\text{287358} } + {\text{43} }{\text{.179} }T$
    $ \left( {{\text{CaO}}} \right){\text{ + }}\left( {{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ = CaA}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - {\text{208581} } + {\text{53} }{\text{.750} }T$
    $ {\text{2}}\left( {{\text{MgO}}} \right){\text{ + }}\left( {{\text{Si}}{{\text{O}}_{\text{2}}}} \right){\text{ = M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}}= - {\text{232410} } + {\text{59} }{\text{.229} }T$
    $ {\text{2}}\left( {{\text{FeO}}} \right){\text{ + }}\left( {{\text{Si}}{{\text{O}}_{\text{2}}}} \right){\text{ = F}}{{\text{e}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - {\text{93882} } + {\text{55} }{\text{.045} }T$
    $ {\text{3}}\left( {{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}} \right){\text{ + 2}}\left( {{\text{Si}}{{\text{O}}_{\text{2}}}} \right){\text{ = A}}{{\text{l}}_{\text{6}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{{\text{13}}}}\left( {\text{s}} \right) $${\Delta _{\text{r} } }{G_{\rm{m}}^{\ominus}} = - {\text{360987} } + {\text{135} }{\text{.387} }T$
    下載: 導出CSV

    表  4  不銹鋼渣二元堿度對于選擇性富集、析出含鉻尖晶石相的影響

    Table  4.   Effect of the binary basicity of stainless steel slag on selective enrichment and formation of Cr-containing spinel

    Slag systemBCrystallization
    temperature/ ℃
    Heating
    time /h
    Cr-containing
    phase
    Cr mass fractionin
    spinel phase /%
    CaO?SiO2?Cr2O3?MgO Synthetic slag [37]1.0?2.0160024(CaMg)Cr2O4, Ca3MgSi2O8, Ca2SiO4,CaSiO332.27
    CaO?SiO2?Cr2O3?MgO?FeO Synthetic slag [38]0.6?2.215500.5(Mg,Fe)(Fe,Cr)2O4
    CaO?SiO2?Cr2O3?MgO?Al2O3 Synthetic slag [39]1.1?1.5140012Mg(Al,Cr)2O4, Ca2MgSi2O746.70
    CaO?SiO2?Al2O3?Cr2O3?MgO-CaF2?FeO
    Synthetic slag[40]
    1.0?2.013000.5Mg(Cr,Al)2O4, glass, MgO, Ca2SiO435.23
    CaO?SiO2?Al2O3?CrOx?MgO?FetO Industrial slag [41]0.96?1.96120012(Fe,Mg)(Cr,Al)2O4, CaSiO3, Ca2MgSi2O746.06
    下載: 導出CSV

    表  5  不銹鋼渣的化學成分(FetO、MgO、Al2O3)對于選擇性富集及析出含鉻尖晶石相的影響

    Table  5.   Effect of the chemical composition (FetO, MgO, Al2O3) of stainless steel slag on the selective enrichment and formation of Cr-containing spinel

    Slag systemAdded compound
    (mass fraction/%)
    Crystallization
    temperature /℃
    Heating
    time /h
    Cr-containing
    phase
    Cr content in
    spinel phase/%
    CaO?SiO2?Al2O3?Cr2O3?MgO?
    CaF2?FeO Synthetic slag[44]
    FeO (0?6.00)13001(Fe,Mg)(Cr,Fe,Al)2O4,MeO27.21 (atom fraction)
    CaO?SiO2?Al2O3?Cr2O3?MgO?
    FeO Synthetic slag[45]
    FeO (0?20.00)15500.5(Mg,Fe)(Cr,Fe,Al)2O427.38 (mass fraction)
    CaO?SiO2?Al2O3?Cr2O3?MgO?
    Fe2O3 Synthetic slag[46]
    Fe2O3 (0?20.00)15500.5(Mg,Fe)(Cr,Fe,Al)2O4
    CaO?SiO2?Al2O3?Cr2O3?MgO?FeO?Fe2O3
    Synthetic slag[47]
    Fe2O3 (2.00?12.00)15500.5(Mg,Fe,Ca)(Cr,Fe,Al)2O412.79 (atom fraction)
    CaO?SiO2?Cr2O3?MgO
    Synthetic slag[48]
    MgO (0?12.00)160024MgCr2O4,Cr2O3,CrO63.98 (mass fraction)
    CaO?SiO2?Cr2O3?MgO?CaF2
    Synthetic slag[35]
    MgO (0?9.00)16000CaCr2O4,CaCrO4,Ca5(CrO4)3F,

    MgCr2O4
    33.00 (mass fraction)
    CaO?SiO2?Al2O3?Cr2O3?MgO
    Synthetic slag[51]
    Al2O3 (3.00?12.00)14000.5Mg(Al,Cr)2O4,Ca2SiO4,Melilite10.94 (atom fraction)
    CaO?SiO2?Al2O3?Cr2O3?MgO?
    FeO?CaF2 Synthetic slag[33]
    Al2O3 (4.00?16.00)13000.5Mg(Al,Cr)2O4,Ca2SiO418.23(atom fraction)
    CaO?SiO2?Al2O3?Cr2O3?MgO
    Synthetic slag[34]
    Al2O3 (5.56?25.00)1400?160048Mg(Al,Cr)2O4
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhao P. China's stainless steel output reached 30.139 million tons in 2020 [N/OL]. www. csteelnews. com (2021-1-27) [2022-2-10]. http://www.csteelnews.com/sjzx/gsfx/202101/t20210127_46237.html

    趙萍. 2020年中國不銹鋼產量達3013.9萬噸[N/OL]. 中國鋼鐵新聞網 (2021-1-27) [2022-2-10]. http://www.csteelnews.com/sjzx/gsfx/202101/t20210127_46237.html
    [2] Shen H T, Forssberg E, Nordstr?m U. Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery. Resour Conserv Recycl, 2004, 40(3): 245 doi: 10.1016/S0921-3449(03)00072-7
    [3] Kim G, Sohn I. Selective metal cation concentration during the solidification of stainless steel EAF dust and slag mixtures from high temperatures for increased Cr recovery. J Hazard Mater, 2018, 359: 174 doi: 10.1016/j.jhazmat.2018.07.053
    [4] Ouyang S L, Zhang Y X, Chen Y X, et al. Preparation of glass-ceramics using chromium-containing stainless steel slag: Crystal structure and solidification of heavy metal chromium. Sci Rep, 2019, 9: 1964 doi: 10.1038/s41598-018-37996-4
    [5] Cheng Z W, Xu Y. Process technology of stainless steel smelting. Special Steel Technol, 2011, 17(1): 1

    程志旺, 許勇. 不銹鋼冶煉工藝技術. 特鋼技術, 2011, 17(1):1
    [6] Cao L H. Study on the Enrichment and Stabilization of Chromium in Stainless Steel Slag [Dissertation]. Shenyang: Northeastern University, 2018

    操龍虎. 不銹鋼渣中鉻的富集及穩定化控制研究[學位論文]. 沈陽: 東北大學, 2018
    [7] Bai Z T. Preparation and Characterization on the High-Carbon Ferrochromium Slag-based Glass-ceramics [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    白智韜. 高碳鉻鐵渣制備微晶玻璃及其性能的基礎研究[學位論文]. 北京: 北京科技大學, 2017
    [8] Jia Z H. Study on the Occurrence State and Distribution Behavior of Chromium in the Preparation of Chromium Containing Glass Ceramics [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2020

    賈志恒. 含鉻微晶玻璃制備過程中鉻的賦存狀態及分布行為研究[學位論文]. 贛州: 江西理工大學, 2020
    [9] Zhang Y X. Study on the Effect of the Crystallization and Curing Effect of Heavy Metal Cr in the Slag Glass-Ceramics [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020

    張宇軒. 礦渣微晶玻璃中重金屬鉻固化效果及其對析晶影響的研究[學位論文]. 包頭: 內蒙古科技大學, 2020
    [10] Bai Z T, Qiu G B, Peng B, et al. Synthesis and characterization of glass-ceramics prepared from high-carbon ferrochromium slag. RSC Adv, 2016, 6(58): 52715 doi: 10.1039/C6RA06245H
    [11] Huang Q F, Yang Y F, Wang Q. Potential for serious environmental threats from uncontrolled Co-processing of wastes in cement kilns. Environ Sci Technol, 2012, 46(24): 13031 doi: 10.1021/es3042274
    [12] Lind B B, F?llman A M, Larsson L B. Environmental impact of ferrochrome slag in road construction. Waste Manage, 2001, 21(3): 255 doi: 10.1016/S0956-053X(00)00098-2
    [13] Sheen Y N, Wang H Y, Sun T H. A study of engineering properties of cement mortar with stainless steel oxidizing slag and reducing slag resource materials. Constr Build Mater, 2013, 40: 239 doi: 10.1016/j.conbuildmat.2012.09.078
    [14] Park D, Lim S R, Lee H W, et al. Mechanism and kinetics of Cr(VI) reduction by waste slag generated from iron making industry. Hydrometallurgy, 2008, 93(1-2): 72 doi: 10.1016/j.hydromet.2008.03.003
    [15] Wang T G, Li Z H. Some thermodynamic properties of calcium chromate. J Chem Eng Data, 2004, 49(5): 1300 doi: 10.1021/je049968r
    [16] Estokova A, Palascakova L, Kanuchova M. Study on Cr(VI) leaching from cement and cement composites. Int J Environ Res Public Health, 2018, 15(4): 824 doi: 10.3390/ijerph15040824
    [17] Rosales J, Cabrera M, Agrela F. Effect of stainless steel slag waste as a replacement for cement in mortars. Mechanical and statistical study. Constr Build Mater, 2017, 142: 444 doi: 10.1016/j.conbuildmat.2017.03.082
    [18] Zhao Q Z, Li J G, Zeng Y N, et al. Thermodynamics of chromium oxidation of stainless steel slag under alkaline condition. Environ Prot Sci, 2020, 46(6): 173 doi: 10.16803/j.cnki.issn.1004-6216.2020.06.029

    趙慶忠, 李俊國, 曾亞南, 等. 堿性條件下不銹鋼渣中鉻的氧化行為熱力學. 環境保護科學, 2020, 46(6):173 doi: 10.16803/j.cnki.issn.1004-6216.2020.06.029
    [19] Gao Z Y, Li J G, Liu B, et al. Mineralogical composition of EAF slag and its short-term leaching characteristics. Ind Saf Environ Prot, 2017, 43(11): 80 doi: 10.3969/j.issn.1001-425X.2017.11.021

    高志遠, 李俊國, 劉寶, 等. EAF渣礦相組成及其短期淋溶特性. 工業安全與環保, 2017, 43(11):80 doi: 10.3969/j.issn.1001-425X.2017.11.021
    [20] Adegoloye G, Beaucour A L, Ortola S, et al. Mineralogical composition of EAF slag and stabilised AOD slag aggregates and dimensional stability of slag aggregate concretes. Constr Build Mater, 2016, 115: 171 doi: 10.1016/j.conbuildmat.2016.04.036
    [21] Engstr?m F, Adolfsson D, Yang Q, et al. Crystallization behaviour of some steelmaking slags. Steel Res Int, 2010, 81(5): 362 doi: 10.1002/srin.200900154
    [22] Mostafaee S, Andersson M, J?nsson P G. Petrographical study of microstructural evolution of EAF duplex stainless steelmaking slags. Ironmak Steelmak, 2011, 38(2): 90 doi: 10.1179/030192310X12731438631769
    [23] Wang Y J, Li J G, Zheng N. Mineral compositions and microstructures of AOD stainless steel slag. Iron Steel Vanadium Titanium, 2013, 34(4): 68 doi: 10.7513/j.issn.1004-7638.2013.04.013

    王亞軍, 李俊國, 鄭娜. AOD不銹鋼渣礦相組成及其顯微形貌. 鋼鐵釩鈦, 2013, 34(4):68 doi: 10.7513/j.issn.1004-7638.2013.04.013
    [24] Li J G, Liu B, Zeng Y N, et al. Maximum availability and mineralogical control of chromium released from AOD slag. Environ Monit Assess, 2017, 189(3): 113 doi: 10.1007/s10661-017-5843-4
    [25] Han Z J, Holappa L. Bubble bursting phenomenon in gas/metal/slag systems. Metall Mater Trans B, 2003, 34(5): 525 doi: 10.1007/s11663-003-0020-2
    [26] Han Z J, Holappa L. Mechanisms of iron entrainment into slag due to rising gas bubbles. ISIJ Int, 2003, 43(3): 292 doi: 10.2355/isijinternational.43.292
    [27] Lee Y M, Nassaralla C L. Standard free energy of formation of calcium chromate. Mater Sci Eng A, 2006, 437(2): 334 doi: 10.1016/j.msea.2006.08.010
    [28] Zhao Q, Liu C J, Li B K, et al. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. Int J Miner Metall Mater, 2017, 24(12): 1361 doi: 10.1007/s12613-017-1528-9
    [29] Yang X M, Duan J P, Shi C B, et al. A thermodynamic model of phosphorus distribution ratio between CaO?SiO2?MgO?FeO?Fe2O3?MnO?Al2O3?P2O5 slags and molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B, 2011, 42(4): 738 doi: 10.1007/s11663-011-9491-8
    [30] Duan S C, Guo X L, Guo H J, et al. A manganese distribution prediction model for CaO?SiO2?FeO?MgO?MnO?Al2O3 slags based on IMCT. Ironmak Steelmak, 2017, 44(3): 168 doi: 10.1080/03019233.2016.1198859
    [31] Liu X, Diao J, Ke Z Q, et al. Experimental investigation and thermodynamic modeling of vanadium, chromium and phosphorus distributions between FeO?SiO2?CaO?V2O3?Cr2O3?P2O5?MnO slag and semi-steel. Metall Res Technol, 2016, 113(4): 407 doi: 10.1051/metal/2016023
    [32] Yang X M, Shi C B, Zhang M, et al. A thermodynamic model of phosphate capacity for CaO?SiO2?MgO?FeO?Fe2O3?MnO?Al2O3?P2O5 slags equilibrated with molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B, 2011, 42(5): 951 doi: 10.1007/s11663-011-9527-0
    [33] Wang Z J, Sohn I. Understanding the solidification and leaching behavior of synthesized Cr-containing stainless steel slags with varying Al2O3/SiO2 mass ratios. Ceram Int, 2021, 47(8): 10918 doi: 10.1016/j.ceramint.2020.12.211
    [34] García-Ramos E, Romero-Serrano A, Zeifert B, et al. Immobilization of chromium in slags using MgO and Al2O3. Steel Res Int, 2008, 79(5): 332 doi: 10.1002/srin.200806135
    [35] Cabrera-Real H, Romero-Serrano A, Zeifert B, et al. Effect of MgO and CaO/SiO2 on the immobilization of chromium in synthetic slags. J Mater Cycles Waste Manag, 2012, 14(4): 317 doi: 10.1007/s10163-012-0072-y
    [36] Samada Y, Miki T, Hino M. Prevention of chromium elution from stainless steel slag into seawater. ISIJ Int, 2011, 51(5): 728 doi: 10.2355/isijinternational.51.728
    [37] Albertsson G J, Teng L, Bj?rkman B. Effect of basicity on chromium partition in CaO?MgO?SiO2?Cr2O3 synthetic slag at 1873 K. Miner Process Extr Metall, 2014, 123(2): 116 doi: 10.1179/1743285513Y.0000000038
    [38] Li J L, Zeng Q, Mou Q Q, et al. Effect of basicity on precipitation of spinel crystals in a CaO?SiO2?MgO?Cr2O3?FeO system. High Temp Mater Process, 2019, 38(2019): 867 doi: 10.1515/htmp-2019-0043
    [39] Shu Q F, Luo Q Y, Wang L J, et al. Effects of MnO and CaO/SiO2 mass ratio on phase formations of CaO?Al2O3?MgO?SiO2?CrOx Slag at 1673 K and PO2 = 10-10 atm. Steel Res Int, 2014, 86(4): 391
    [40] Cao L H, Liu C J, Zhao Q, et al. Analysis on the stability of chromium in mineral phases in stainless steel slag. Metall Res Technol, 2018, 115(1): 114 doi: 10.1051/metal/2017071
    [41] Li W L, Xue X X. Effects of silica addition on chromium distribution in stainless-steel slag. Ironmak Steelmak, 2018, 45(10): 929 doi: 10.1080/03019233.2017.1412386
    [42] Beukes J P, Guest R N. Technical note Cr(VI) generation during milling. Miner Eng, 2001, 14(4): 423 doi: 10.1016/S0892-6875(01)00022-X
    [43] Li J L, Xu A J, He D F, et al. Effect of FeO on the formation of spinel phases and chromium distribution in the CaO?SiO2?MgO?Al2O3?Cr2O3 system. Int J Miner Metall Mater, 2013, 20(3): 253 doi: 10.1007/s12613-013-0720-9
    [44] Yu Y, Wang D, Li J L, et al. Thermodynamic calculation of FeO effect on precipitation of spinel containing chromium in CaO?SiO2?MgO?Al2O3?Cr2O3 system. J Wuhan Univ Sci Technol, 2018, 41(1): 15

    余岳, 王迪, 李建立, 等. FeO影響CaO?SiO2?MgO?Al2O3?Cr2O3體系中含鉻尖晶石晶體析出的熱力學分析. 武漢科技大學學報, 2018, 41(1):15
    [45] Zeng Q, Li J L, Mou Q Q, et al. Effect of FeO on spinel crystallization and chromium stability in stainless steel-making slag. JOM, 2019, 71(7): 2331 doi: 10.1007/s11837-019-03465-0
    [46] Mou Q Q, Li J L, Zeng Q, et al. Effect of Fe2O3 on the size and components of spinel crystals in the CaO?SiO2?MgO?Al2O3?Cr2O3 system. Int J Miner Metall Mater, 2019, 26(9): 1113 doi: 10.1007/s12613-019-1822-9
    [47] Zeng Q, Li J L, Yu Y, et al. Occurrence and leaching behavior of chromium in synthetic stainless steel slag containing FetO. Minerals, 2021, 11(10): 1055 doi: 10.3390/min11101055
    [48] Arredondo-Torres V, Romero-Serrano A, Zeifert B, et al. Stabilization of MgCr2O4 spinel in slags of the SiO2?CaO?MgO?Cr2O3 system. Rev Metal, 2006, 42(6): 417
    [49] Morita K, Inoue A, Takayama N, et al. The solubility of MgO?Cr2O3 in MgO?Al2O3?SiO2?CaO slag at 1600 ℃ under reducing conditions. Tetsu-to-Hagane, 1988, 74(6): 999 doi: 10.2355/tetsutohagane1955.74.6_999
    [50] Morita K, Shibuya T, Sano N. The solubility of the chromite in MgO?Al2O3?SiO2?CaO melts at 1600 ℃ in air. Tetsu-to-Hagane, 1988, 74(4): 632 doi: 10.2355/tetsutohagane1955.74.4_632
    [51] Albertsson G, Teng L D, Bj?rkman B, et al. Effect of low oxygen partial pressure on the chromium partition in CaO?MgO?SiO2?Cr2O3?Al2O3 synthetic slag at elevated temperatures. Steel Res Int, 2013, 84(7): 670 doi: 10.1002/srin.201200214
    [52] Cao L H, Liu C J, Zhao Q, et al. Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag. J Iron Steel Res Int, 2017, 24(3): 258 doi: 10.1016/S1006-706X(17)30038-9
    [53] Freij S J, Parkinson G M. Surface morphology and crystal growth mechanism of gibbsite in industrial Bayer liquors. Hydrometallurgy, 2005, 78(3-4): 246 doi: 10.1016/j.hydromet.2005.04.001
    [54] Zhang L J, Chen Z Y, Hu Q M, et al. On the abnormal fast diffusion of solute atoms in α-Ti: A first-principles investigation. J Alloys Compd, 2018, 740: 156 doi: 10.1016/j.jallcom.2017.12.359
    [55] Li J L, Mou Q Q, Zeng Q, et al. Experimental study on precipitation behavior of spinels in stainless steel-making slag under heating treatment. Processes, 2019, 7(8): 487 doi: 10.3390/pr7080487
    [56] Sakai Y, Yabe Y, Takahashi M, et al. Elution of hexavalent chromium from molten sewage sludge slag: Influence of sample basicity and cooling rate. Ind Eng Chem Res, 2013, 52(10): 3903 doi: 10.1021/ie303354j
    [57] Albertsson G J, Engstr?m F, Teng L D. Effect of the heat treatment on the chromium partition in Cr-containing industrial and synthetic slags. Steel Res Int, 2014, 85(10): 1418 doi: 10.1002/srin.201300231
    [58] Cao L H, Liu C J, Zhao Q, et al. Growth behavior of spinel in stainless steel slag during cooling process. J Iron Steel Res Int, 2018, 25(11): 1131 doi: 10.1007/s42243-018-0058-7
    [59] Li W L, Xue X X. Effect of cooling regime on phase transformation and chromium enrichment in stainless-steel slag. Ironmak Steelmak, 2019, 46(7): 642 doi: 10.1080/03019233.2018.1436890
    [60] Chan C, Young J. Physical stabilization of the beta to gamma transformation in dicalcium silicate. J Am Ceram Soc, 2005, 75(6): 1621
    [61] Ghose A, Chopra S, Young J F. Microstructural characterization of doped dicalcium silicate polymorphs. J Mater Sci, 1983, 18(10): 2905 doi: 10.1007/BF00700771
    [62] Klyuev V P, Pevzner B Z. The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses. Glass Phys Chem, 2002, 28(4): 207 doi: 10.1023/A:1019954010719
    [63] Klyuev V P, Pevzner B Z. Structural interpretation of the glass transition temperature and thermal expansion of glasses in the system BaO?Al2O3?B2O3. Phys Chem Glasses, 2000, 41(6): 380
    [64] Klyuev V P, Pevzner B Z. Thermal expansion and transition temperature of glasses in the systems BeO?Al2O3?B2O3 and MgO?Al2O3?B2O3. J Non Cryst Solids, 2007, 353(18-21): 2008 doi: 10.1016/j.jnoncrysol.2007.01.065
    [65] Lin Y, Luo Q Y, Yan B J, et al. Effect of B2O3 addition on mineralogical phases and leaching behavior of synthetic CaO?SiO2?MgO?Al2O3?CrOx slag. J Mater Cycles Waste Manag, 2020, 22(4): 1208 doi: 10.1007/s10163-020-01015-4
    [66] Wang W, Liao W, Wu X R, et al. Study on occurrence and concentrating behavior of chromium in stainless steel slag. Multipurp Util Miner Resour, 2012(3): 42 doi: 10.3969/j.issn.1000-6532.2012.03.011

    王偉, 廖偉, 武杏榮, 等. 不銹鋼渣中鉻的賦存狀態與鉻的富集行為研究. 礦產綜合利用, 2012(3):42 doi: 10.3969/j.issn.1000-6532.2012.03.011
    [67] Wu X R, Zhong Q B, Shen X M, et al. Influence of B2O3 on crystallization behavior of Cr-bearing phase in stainless steel slag // 2018 4th International Conference on Green Materials and Environmental Engineering (GMEE). Beijing, 2018: 1
    [68] Li W L, Xue X X. Effects of boron oxide addition on chromium distribution and emission of hexavalent chromium in stainless-steel slag. Ind Eng Chem Res, 2018, 57(13): 4731 doi: 10.1021/acs.iecr.8b00499
  • 加載中
圖(3) / 表(5)
計量
  • 文章訪問數:  419
  • HTML全文瀏覽量:  148
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-10
  • 網絡出版日期:  2022-03-30
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回