<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于聲發射特征提取和機器學習的煤破壞狀態預測

李振雷 李娜 楊菲 SOBOLEV Aleksei 宋大釗 王洪磊 納然 曹亞利

李振雷, 李娜, 楊菲, SOBOLEV Aleksei, 宋大釗, 王洪磊, 納然, 曹亞利. 基于聲發射特征提取和機器學習的煤破壞狀態預測[J]. 工程科學學報, 2023, 45(1): 19-30. doi: 10.13374/j.issn2095-9389.2022.02.07.003
引用本文: 李振雷, 李娜, 楊菲, SOBOLEV Aleksei, 宋大釗, 王洪磊, 納然, 曹亞利. 基于聲發射特征提取和機器學習的煤破壞狀態預測[J]. 工程科學學報, 2023, 45(1): 19-30. doi: 10.13374/j.issn2095-9389.2022.02.07.003
LI Zhen-lei, LI Na, YANG Fei, SOBOLEV Aleksei, SONG Da-zhao, WANG Hong-lei, NA Ran, CAO Ya-li. Applying feature extraction of acoustic emission and machine learning for coal failure forecasting[J]. Chinese Journal of Engineering, 2023, 45(1): 19-30. doi: 10.13374/j.issn2095-9389.2022.02.07.003
Citation: LI Zhen-lei, LI Na, YANG Fei, SOBOLEV Aleksei, SONG Da-zhao, WANG Hong-lei, NA Ran, CAO Ya-li. Applying feature extraction of acoustic emission and machine learning for coal failure forecasting[J]. Chinese Journal of Engineering, 2023, 45(1): 19-30. doi: 10.13374/j.issn2095-9389.2022.02.07.003

基于聲發射特征提取和機器學習的煤破壞狀態預測

doi: 10.13374/j.issn2095-9389.2022.02.07.003
基金項目: 國家自然科學基金青年科學基金資助項目(51904019);國家自然科學基金國際(地區)合作與交流資助項目(52011530037);青年教師國際交流成長計劃資助項目(QNXM20210004)
詳細信息
    通訊作者:

    E-mail: songdz@ustb.edu.cn

  • 中圖分類號: TD76

Applying feature extraction of acoustic emission and machine learning for coal failure forecasting

More Information
  • 摘要: 同步采集了煤樣單軸壓縮破壞過程的聲發射全波形數據和應力數據,提取了聲發射梅爾倒譜系數作為樣本特征,定義煤樣當前受力與其峰值載荷的比值為煤樣的應力狀態并將其作為樣本標簽,利用機器學習方法構建了煤樣破壞狀態的預測模型。結果表明:梅爾倒譜系數可以很好地表征煤樣的破壞狀態,該參量在煤樣達到受力峰值80%后表現出明顯突增或突降或先增加然后突降的規律,機器學習能夠利用該樣本特征建立煤樣破壞狀態預測模型進而預測煤樣的危險狀態,利用五折交叉驗證方法評價模型的預測準確度達到88.61%,模型預測效果和穩定性良好;進一步討論了不同重要度的梅爾倒譜系數組合作為樣本特征對于模型預測效果的影響,發現樣本特征中含有重要度高的特征和關鍵特征是模型預測準確度高的關鍵。這可為進一步完善煤巖動力災害預測預警提供借鑒。

     

  • 圖  1  聲發射信號分幀示意圖

    Figure  1.  Schematic diagram of acoustic emission signal framing

    圖  2  煤樣破壞狀態預測模型構建流程圖

    Figure  2.  Flow chart for the building of coal failure forecasting model

    圖  3  實驗系統示意圖及聲發射探頭布置圖

    Figure  3.  Schematic diagram of experimental system and layout of acoustic emission sensors

    圖  4  4-1煤樣MFCC與應力隨時間的變化. (a) MFCC-1;(b) MFCC-2;(c) MFCC-3;(d) MFCC-4;(e) MFCC-5;(f) MFCC-6;(g) MFCC-7;(h) MFCC-8;(i) MFCC-9;(j) MFCC-10;(k) MFCC-11;(l) MFCC-12

    Figure  4.  Variation of MFCC and stress of coal sample No. 4-1 with increasing time: (a) MFCC-1; (b) MFCC-2; (c) MFCC-3; (d) MFCC-4; (e) MFCC-5; (f) MFCC-6; (g) MFCC-7; (h) MFCC-8; (i) MFCC-9; (j) MFCC-10; (k) MFCC-11; (l) MFCC-12

    圖  5  不同煤樣在不同加載速率下MFCC-1的變化. (a) No. 1-2, 3 μm·s–1;(b) No. 2-1, 7 μm·s–1;(c) No. 3-1, 11 μm·s–1;(d) No. 4-2, 15 μm·s–1;(e) No. 5-1, 20 μm·s–1

    Figure  5.  Variation of MFCC-1 of different coal samples under different loading rates: (a) No. 1-2, 3 μm·s–1; (b) No. 2-1, 7 μm·s–1; (c) No. 3-1, 11 μm·s–1; (d) No. 4-2, 15 μm·s–1; (e) No. 5-1, 20 μm·s–1

    圖  6  不同煤樣在不同加載速率下MFCC-2的變化. (a) No. 1-2, 3 μm·s–1;(b) No. 2-1, 7 μm·s–1;(c) No. 3-1, 11 μm·s–1;(d) No. 4-2, 15 μm·s–1;(e) No. 5-1, 20 μm·s–1

    Figure  6.  Variation of MFCC-2 of different coal samples under different loading rates: (a) No. 1-2, 3 μm·s–1; (b) No. 2-1, 7 μm·s–1; (c) No. 3-1, 11 μm·s–1; (d) No. 4-2, 15 μm·s–1; (e) No. 5-1, 20 μm·s–1

    圖  7  基于五折交叉驗證的模型ROC曲線圖

    Figure  7.  ROC graph based on five-fold cross validation

    圖  8  煤樣破壞狀態預測模型的MFCC特征重要度

    Figure  8.  Importance of each MFCC parameter of the forecasting model

    圖  9  不同樣本特征下煤樣破壞狀態預測模型的ACC、TNR、TPR和AUC

    Figure  9.  ACC, TNR, TPR, and AUC of the forecasting model under different MFCC combinations

    表  1  Light GBM算法參數設置

    Table  1.   Parameter setting of Light GBM algorithm

    ParameterValueRole
    Learning_rate0.1Control model training speed
    ObjectiveBinaryAssigned learning tasks
    n_estimators20Control the number of training sessions
    Early_stopping_rounds50Control the maximum number of training sessions
    Max_depth3Set the depth of the decision tree
    Num_leaves8Adjust the complexity of the decision tree
    Subsample0.8Control the sampling ratio per tree
    Colsample_bytree0.8Control the proportion of features used per tree
    Min_child_weight2Control the weights of the minimum leaf nodes
    Reg_alpha0Prevent overfitting
    Reg_lambda1Prevent overfitting
    Verbose100Output model results
    下載: 導出CSV

    表  2  煤樣聲發射樣本統計

    Table  2.   Statistics of acoustic emission samples of each coal sample

    Coal samplesNumber of acoustic emission fragments
    Safety sampleDangerous sampleTotal number of samples
    1-111032336514397
    1-211762206613828
    2-1417312115394
    2-240137254738
    3-127288133541
    3-220146022616
    4-113626872049
    4-221784862664
    5-113473441691
    5-212773051582
    Total418861060452490
    下載: 導出CSV

    表  3  混淆矩陣[33]

    Table  3.   Confusion matrix[33]

    True valuePredicted value
    10
    1TPFN
    0FPTN
    下載: 導出CSV

    表  4  煤樣加載實驗方案

    Table  4.   Coal sample loading scheme

    Coal samplesSample sizeSample numberLoading rate/(μm·s?1)
    Kuangou Mine?50 mm×100 mm1-1,1-23
    2-1,2-27
    3-1,3-211
    4-1,4-215
    5-1,5-220
    下載: 導出CSV

    表  5  五折交叉驗證方法分組情況

    Table  5.   Grouping of the five-fold cross validation

    Fold numberTraining setValidation set
    Fold-11-2, 2-1, 2-2, 3-1, 4-1, 4-2, 5-1, 5-21-1, 3-2
    Fold-21-1, 2-1, 2-2, 3-1, 3-2, 4-2, 5-1, 5-21-2, 4-1
    Fold-31-1, 1-2, 2-2, 3-1, 3-2, 4-1, 5-1, 5-22-1, 4-2
    Fold-41-1, 1-2, 2-1, 3-1, 3-2, 4-1, 4-2, 5-22-2, 5-1
    Fold-51-1, 1-2, 2-1, 2-2, 3-2, 4-1, 4-2, 5-13-1, 5-2
    下載: 導出CSV

    表  6  基于五折交叉驗證的模型ACC、TPR、TNR和AUC結果

    Table  6.   Results showing the ACC, TPR, TNR, and AUC of the forecasting based on five-fold cross validation

    Fold numberTNFPFNTPACC/%TPR/%TNR/%AUC
    Fold-1102132231193198089.6062.4097.860.97
    Fold-210224273198200696.2991.0297.400.99
    Fold-3477730348488387.7964.5994.040.90
    Fold-4366835449962183.4155.4591.200.88
    Fold-5273247110578985.9488.2685.300.92
    Average value88.6172.3493.160.93
    Note: TN is true negative and means the number of negative predicted as negative classes; TP is true positive and means the number of positive predicted as positive classes; FN is false negative and means the number of positive predicted as negative classes; FP is false positive and means the number of negative predicted as positive classes; ACC is the accuracy; TPR is the true positive rate; TNR is the true negative rate; AUC is the area under the ROC curve.
    下載: 導出CSV

    表  7  23種MFCC特征組合

    Table  7.   23 MFCC feature combinations

    Serial numberMFCC combination Serial numberMFCC combination
    1[2] 13[12,3,1,10,8,11,4,7,5,9,6]
    2[2,12]14[3,1,10,8,11,4,7,5,9,6]
    3[2,12,3]15[1,10,8,11,4,7,5,9,6]
    4[2,12,3,1]16[10,8,11,4,7,5,9,6]
    5[2,12,3,1,10]17[8,11,4,7,5,9,6]
    6[2,12,3,1,10,8]18[11,4,7,5,9,6]
    7[2,12,3,1,10,8,11]19[4,7,5,9,6]
    8[2,12,3,1,10,8,11,4]20[7,5,9,6]
    9[2,12,3,1,10,8,11,4,7]21[5,9,6]
    10[2,12,3,1,10,8,11,4,7,5]22[9,6]
    11[2,12,3,1,10,8,11,4,7,5,9]23[6]
    12[2,12,3,1,10,8,11,4,7,5,9,6]
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129

    李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129
    [2] Li X B, Gong F Q. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing. J China Coal Soc, 2021, 46(3): 846

    李夕兵, 宮鳳強. 基于動靜組合加載力學試驗的深部開采巖石力學研究進展與展望. 煤炭學報, 2021, 46(3):846
    [3] Liu Z Q, Song Z Y, Ji H G, et al. Construction mode and key technology of mining shaft engineering for deep mineral resources. J China Coal Soc, 2021, 46(3): 826

    劉志強, 宋朝陽, 紀洪廣, 等. 深部礦產資源開采礦井建設模式及其關鍵技術. 煤炭學報, 2021, 46(3):826
    [4] Qi Q X, Pan Y S, Shu L Y, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J China Coal Soc, 2018, 43(7): 1801

    齊慶新, 潘一山, 舒龍勇, 等. 煤礦深部開采煤巖動力災害多尺度分源防控理論與技術架構. 煤炭學報, 2018, 43(7):1801
    [5] He X Q, Dou L M, Mu Z L, et al. Continuous monitoring and warning theory and technology of rock burst dynamic disaster of coal. J China Coal Soc, 2014, 39(8): 1485

    何學秋, 竇林名, 牟宗龍, 等. 煤巖沖擊動力災害連續監測預警理論與技術. 煤炭學報, 2014, 39(8):1485
    [6] Li Z L, He S Q, Song D Z, et al. Microseismic temporal-spatial precursory characteristics and early warning method of rockburst in steeply inclined and extremely thick coal seam. Energies, 2021, 14(4): 1186 doi: 10.3390/en14041186
    [7] Lou Q, He X Q, Song D Z, et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform. Chin J Eng, 2019, 41(7): 874

    婁全, 何學秋, 宋大釗, 等. 基于全波形的煤樣單軸壓縮破壞聲電時頻特征. 工程科學學報, 2019, 41(7):874
    [8] Guo J Y, Zhang Y Z. Analysis on acoustic emission characteristics of coal under uniaxial compression. Coal Technol, 2021, 40(4): 129

    郭敬遠, 張玉柱. 煤單軸壓縮破壞過程聲發射特征分析. 煤炭技術, 2021, 40(4):129
    [9] Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075

    劉娟紅, 趙力, 宋少民, 等. 混凝土硫酸鹽腐蝕損傷的聲波與聲發射變化特征及機理. 工程科學學報, 2016, 38(8):1075
    [10] Zhang J, Chai M Y, Xiang J H, et al. Fatigue damage evaluation of 316LN stainless steel using acoustic emission monitoring. Chin J Eng, 2018, 40(4): 461

    張進, 柴孟瑜, 項靖海, 等. 基于聲發射監測的316LN不銹鋼的疲勞損傷評價. 工程科學學報, 2018, 40(4):461
    [11] Jin P J, Wang E Y, Song D Z. Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory. Geomech Eng, 2017, 12(4): 627 doi: 10.12989/gae.2017.12.4.627
    [12] Deng X B, Liu Y Z, Xing K, et al. Analysis based on AE space-time evolution characteristics for stage division of whole stress-strain curve of rock. Chin J Rock Mech Eng, 2018, 37(Suppl 2): 4086

    鄧緒彪, 劉遠征, 邢礦, 等. 基于聲發射時空演化的巖石全應力-應變曲線階段特征分析. 巖石力學與工程學報, 2018, 37(Suppl 2): 4086
    [13] Ren J X, Jing S, Zhang K. Study on failure mechanism and acoustic emission characteristics of outburst proneness coal rock under dynamic and static loading. Coal Sci Technol, 2021, 49(3): 57

    任建喜, 景帥, 張琨. 沖擊傾向性煤巖動靜載下破壞機理及聲發射特性研究. 煤炭科學技術, 2021, 49(3):57
    [14] Ji H G, Mu N N, Zhang Y Z. Analysis on precursory characteristics of coupled acoustic emission and pressure for rock burst events. J China Coal Soc, 2013, 38(Suppl 1): 1

    紀洪廣, 穆楠楠, 張月征. 沖擊地壓事件AE與壓力耦合前兆特征分析. 煤炭學報, 2013, 38(Suppl 1): 1
    [15] Chelali F Z, Djeradi A. Text dependant speaker recognition using MFCC, LPC and DWT. Int J Speech Technol, 2017, 20(3): 725 doi: 10.1007/s10772-017-9441-1
    [16] Deshwal D, Sangwan P, Kumar D. Feature extraction methods in language identification: A survey. Wireless Pers Commun, 2019, 107(4): 2071 doi: 10.1007/s11277-019-06373-3
    [17] Mei Q P, Gül M, Boay M. Indirect health monitoring of bridges using Mel-frequency cepstral coefficients and principal component analysis. Mech Syst Signal Process, 2019, 119: 523 doi: 10.1016/j.ymssp.2018.10.006
    [18] Jiang Y, Yu M J, Zhang M Q. Spark discharge identification of electrostatic dust removal based on the back-propagation neural network. Inf Control, 2019, 48(6): 754

    江鶯, 俞銘津, 張夢琦. 基于BP神經網絡的電除塵火花放電識別. 信息與控制, 2019, 48(6):754
    [19] Wang H L, Song D Z, Li Z L, et al. Acoustic emission characteristics of coal failure using automatic speech recognition methodology analysis. Int J Rock Mech Min Sci, 2020, 136: 104472 doi: 10.1016/j.ijrmms.2020.104472
    [20] Pei Y Y, Yang X B, Chuan J P, et al. Time series prediction of microseismic energy level based on feature extraction of onedimensional convolutional neural network. Chin J Eng, 2021, 43(7): 1003

    裴艷宇, 楊小彬, 傳金平, 等. 一維卷積神經網絡特征提取下微震能級時序預測. 工程科學學報, 2021, 43(7):1003
    [21] He Z X, Peng P G, Liao Z Q. An automatic identification and classification method of complex microseismic signals in mines based on Mel-frequency cepstral coefficients. J Saf Sci Technol, 2018, 14(12): 41

    何正祥, 彭平安, 廖智勤. 基于梅爾倒譜系數的礦山復雜微震信號自動識別分類方法. 中國安全生產科學技術, 2018, 14(12):41
    [22] Xie T, Zheng X D, Zhang Y. Seismic facies analysis based on linear prediction cepstrum coefficients. Chin J Geophys, 2016, 59(11): 4266 doi: 10.6038/cjg20161127

    解滔, 鄭曉東, 張?. 基于線性預測倒譜系數的地震相分析. 地球物理學報, 2016, 59(11):4266 doi: 10.6038/cjg20161127
    [23] Chen R H, Huang H M, Chai H M. Study on the discrimination of seismic waveform signals between earthquake and explosion events by convolutional neural network. Prog Geophys, 2018, 33(4): 1331 doi: 10.6038/pg2018BB0326

    陳潤航, 黃漢明, 柴慧敏. 地震和爆破事件源波形信號的卷積神經網絡分類研究. 地球物理學進展, 2018, 33(4):1331 doi: 10.6038/pg2018BB0326
    [24] Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process, 1980, 28(4): 357 doi: 10.1109/TASSP.1980.1163420
    [25] Wu M T, Chen Q S, Qi C C. Slope safety, stability evaluation, and protective measures based on machine learning. Chin J Eng, 2022, 44(2): 180

    武夢婷, 陳秋松, 齊沖沖. 基于機器學習的邊坡安全穩定性評價及防護措施. 工程科學學報, 2022, 44(2):180
    [26] Li B. Practical Application of Machine Learning. Beijing: Posts & Telecom Press, 2017

    李博. 機器學習實踐應用. 北京: 人民郵電出版社, 2017
    [27] Yu D C, Zhao W F, Nie K, et al. Visibility forecast model based on LightGBM algorithm. J Comput Appl, 2021, 41(4): 1035

    余東昌, 趙文芳, 聶凱, 等. 基于LightGBM算法的能見度預測模型. 計算機應用, 2021, 41(4):1035
    [28] Zhou Z H. Machine Learning. Beijing: Tsinghua University Press, 2016

    周志華. 機器學習. 北京: 清華大學出版社, 2016
    [29] Jung Y. Multiple predicting K-fold cross-validation for model selection. J Nonparametric Stat, 2018, 30(1): 197 doi: 10.1080/10485252.2017.1404598
    [30] Rodriguez J D, Perez A, Lozano J A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell, 2010, 32(3): 569 doi: 10.1109/TPAMI.2009.187
    [31] Qi C C, Fourie A, Du X H, et al. Prediction of open stope hangingwall stability using random forests. Nat Hazards, 2018, 92(2): 1179 doi: 10.1007/s11069-018-3246-7
    [32] Liu H L, Wu S, Wei G Y, et al. Click-through rate prediction model based on a deep neural network. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2021.03.23.002

    劉弘歷, 武森, 魏桂英, 等. 基于深度神經網絡的點擊率預測模型. 工程科學學報,https://doi.org/10.13374/j.issn2095-9389.2021.03.23.002
    [33] Xue Y G, Bai C H, Qiu D H, et al. Predicting rockburst with database using particle swarm optimization and extreme learning machine. Tunn Undergr Space Technol, 2020, 98: 103287 doi: 10.1016/j.tust.2020.103287
  • 加載中
圖(9) / 表(7)
計量
  • 文章訪問數:  514
  • HTML全文瀏覽量:  153
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-07
  • 網絡出版日期:  2022-05-17
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回