<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

稀土元素鈰對鋼中非金屬夾雜物改性和腐蝕影響的第一性原理研究

劉瀚澤 張靜 張繼 張立峰 蓋彥峰

劉瀚澤, 張靜, 張繼, 張立峰, 蓋彥峰. 稀土元素鈰對鋼中非金屬夾雜物改性和腐蝕影響的第一性原理研究[J]. 工程科學學報, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001
引用本文: 劉瀚澤, 張靜, 張繼, 張立峰, 蓋彥峰. 稀土元素鈰對鋼中非金屬夾雜物改性和腐蝕影響的第一性原理研究[J]. 工程科學學報, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001
LIU Han-ze, ZHANG Jing, ZHANG Ji, ZHANG Li-feng, GE Yan-feng. First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001
Citation: LIU Han-ze, ZHANG Jing, ZHANG Ji, ZHANG Li-feng, GE Yan-feng. First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001

稀土元素鈰對鋼中非金屬夾雜物改性和腐蝕影響的第一性原理研究

doi: 10.13374/j.issn2095-9389.2022.02.04.001
基金項目: 河北省科技計劃資助項目(20311004D,20591001D,20311005D);燕山大學高鋼中心(HSC)和北方工業大學高鋼中心(HSC)資助項目
詳細信息
    通訊作者:

    張靜,E-mail: zhangjing@ysu.edu.cn

    張立峰,E-mail: zhanglifeng@ncut.edu.cn

  • 中圖分類號: TG142.1

First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel

More Information
  • 摘要: 通過原位腐蝕觀察和基于密度泛函理論的第一性原理計算方法,從微觀角度研究了稀土元素鈰(Ce)對J5不銹鋼中夾雜物的改性和夾雜物誘導腐蝕的機理。采用掃描電子顯微鏡與能譜分析了稀土元素Ce改性夾雜物的過程中夾雜物成分和類型的變化,觀察到的代表夾雜物為CeAlO3?Ce2O2S、Ce2O3?Ce2O2S、MnS等。根據形成能計算,經稀土元素Ce處理后,生成了穩定的Ce2O3、Ce2O2S、CeAlO3夾雜物。通過表面能判斷了晶面的穩定性,Fe(100)-2面的表面能經收斂測得為2.4374 J·m?2,該晶面的功函數為4.7352 eV。通過對比夾雜物與鋼基體的功函數與計算電勢差,分析了不同含Ce夾雜物誘導點蝕的趨勢,探討了不同原子位置、原子數量和不同slab模型對功函數的影響。研究表明,與Fe (100)-2面的電子功函數相比,MnS以及改性后3種夾雜物CeS、Ce2O3和Ce2O2S電勢差大多小于0,CeAlO3的電勢差在0 eV左右。夾雜物不同晶面對功函數影響很大,O、S等非金屬原子數量多的晶面功函數平均值較高,添加稀土元素Ce可以有效降低晶面功函數。5種夾雜物和鋼基體的平均功函數大小順序為CeAlO3>Fe>MnS>CeS>Ce2O2S>Ce2O3。結合不銹鋼中復合夾雜物的實驗結果可知,Ce2O3誘導點蝕發生的概率最高,CeAlO3可以有效提高鋼的耐腐蝕能。

     

  • 圖  1  晶體結構. (a) bcc-Fe;(b) MnS;(c) CeS;(d) Ce2O3;(e) Ce2O2S;(f)CeAlO3

    Figure  1.  Crystal structures: (a) bcc-Fe; (b) MnS; (c) CeS; (d) Ce2O3; (e) Ce2O2S; (f) CeAlO3

    圖  2  MnS夾雜物的形貌及元素分布

    Figure  2.  Morphology and element distribution of the MnS inclusions

    圖  3  CeAlO3?Ce2O2S夾雜物的形貌及元素分布

    Figure  3.  Morphology and element distribution of the CeAlO3?Ce2O2S inclusions

    圖  4  Ce2O3?Ce2O2S夾雜物的形貌及元素分布

    Figure  4.  Morphology and element distribution of the Ce2O3?Ce2O2S inclusions

    圖  5  Fe(100)-2面靜電勢曲線(a)和slab模型(b)

    Figure  5.  Electrostatic potential curve (a) and slab model (b) of Fe (100)-2 surface

    圖  6  MnS和CeS的slab模型

    Figure  6.  Slab model of MnS and CeS

    圖  7  Ce2O3的slab模型

    Figure  7.  Slab model of Ce2O3

    圖  8  Ce2O2S的slab模型

    Figure  8.  Slab model of Ce2O2S

    圖  9  MnS夾雜物與鋼基體間的電勢差

    Figure  9.  Potential difference between MnS inclusions and steel matrix

    圖  10  CeS夾雜物與鋼基體間的電勢差

    Figure  10.  Potential difference between CeS inclusions and steel matrix

    圖  11  Ce2O3夾雜物與鋼基體間的電勢差

    Figure  11.  Potential difference between Ce2O3 inclusions and steel matrix

    圖  12  Ce2O2S夾雜物與鋼基體間的電勢差

    Figure  12.  Potential difference between Ce2O2S inclusions and steel matrix

    圖  13  CeAlO3夾雜物與鋼基體間的電勢差

    Figure  13.  Potential difference between CeAlO3 inclusions and steel matrix

    圖  14  鋼中典型夾雜物在0、1和5 min浸泡后的形貌圖

    Figure  14.  Morphologies of typical inclusion in the Ce-bearing steel after 0, 1, and 5 min immersion

    表  1  Fe與夾雜物晶體結構參數

    Table  1.   Inclusion crystal structure parameters

    MaterialSpace groundAtom positionsLattice parameters
    FeIm$\overline{3} $m (299)Fe (0,0,0)a=b=c=0.283 nm
    α=β=γ=90°
    MnSFm$\overline{3} $m (225)Mn (0,0,0)
    S (0.5,0.5,0.5)
    a=b=c=0.522 nm
    α=β=γ=90°
    CeSFm$\overline{3} $m (225)Ce (0,0,0)
    S (0.5,0.5,0.5)
    a=b=c=0.568 nm
    α=β=γ=90°
    Ce2O3P$\overline{3} $m1 (164)Ce (0.33,0.67,0.25)
    O (0.33,0.67,0.64)
    a=b=0.383 nm
    c=0.607 nm
    α=β=90°,γ=120°
    Ce2O2SP$\overline{3} $m1 (164)Ce (0.33,0.67,0.28)
    O (0.33,0.67,0.63)
    S (0,0,0)
    a=b=0.395 nm
    c=0.680 nm
    α=β=90°, γ=120
    CeAlO3R$\overline{3} $c (164)Ce (0,0,0.25)
    Al (0,0,0)
    O (0.519,0,0.25)
    a=b=0.539 nm
    c=1.139 nm
    α=β=90°, γ=120°
    下載: 導出CSV

    表  2  J5不銹鋼化學成分(質量分數)

    Table  2.   Chemical composition of J5 stainless steel %

    CSiMnPSCrNiN
    0.130.5110.050.0450.001913.370.930.15
    下載: 導出CSV

    表  3  含Ce夾雜物的形成能

    Table  3.   Formation energy of inclusions eV·atom?1

    Ce2O3Ce2O2SCeAlO3CeSCe2S3Ce3S4
    ?3.33192?3.20334?3.22015?2.38639?2.43052?2.41476
    下載: 導出CSV

    表  4  Fe不同終止面的電子功函數與表面能

    Table  4.   Electronic work function and surface energy of different termination surfaces of Fe matrix

    SurfaceTerminated planeWork function/eVSurface energy/(J·m?2)
    This workExperimentCalculationThis workExperimentCalculation
    10014.74334.67[23]4.65[18]2.74052.41[24]2.463[25]
    24.73522.4374
    11014.73674.5[23, 26]2.44432.41[24]2.48[26]
    24.73682.4431
    11113.80984.81[23]2.71112.41[24]2.658[27]
    23.81052.7113
    33.81822.7111
    下載: 導出CSV

    表  5  MnS不同終止面的電子功函數

    Table  5.   Electronic work function of different termination surfaces of MnS

    SurfaceTerminated planeWork function/eV
    10014.11
    24.10
    11014.14
    24.13
    11113.36
    25.82
    33.39
    45.82
    53.38
    65.81
    下載: 導出CSV

    表  6  CeS不同終止面的電子功函數

    Table  6.   Electronic work function of different termination surfaces of CeS

    SurfaceTerminated planeWork function/eV
    10012.34
    22.32
    11012.42
    22.42
    11113.16
    25.33
    33.15
    45.34
    53.15
    65.34
    下載: 導出CSV

    表  7  Ce2O3不同終止面的電子功函數

    Table  7.   Electronic work function of different termination surfaces of Ce2O3

    SurfaceTerminated planeWork function/eV
    10013.08
    22.05
    32.45
    43.09
    52.05
    62.44
    11011.87
    21.85
    1111 upper plane2.49
    1 lower plane2.12
    2 upper plane2.42
    2 lower plane4.72
    3 upper plane2.74
    3 lower plane2.58
    4 upper plane4.09
    4 lower plane2.22
    5 upper plane2.19
    5 lower plane3.08
    6 upper plane2.46
    6 lower plane2.12
    7 upper plane2.41
    7 lower plane4.74
    8 upper plane2.72
    8 lower plane2.59
    9 upper plane4.09
    9 lower plane2.23
    10 upper plane2.21
    10 lower plane3.13
    下載: 導出CSV

    表  8  Ce2O2S不同終止面的電子功函數

    Table  8.   Electronic work function of different termination surfaces of Ce2O2S

    SurfaceTerminated planeWork function/eV
    10014.52
    22.11
    32.52
    44.51
    52.14
    62.53
    11012.13
    22.13
    1111 upper plane3.44
    1 lower plane2.00
    2 upper plane2.35
    2 lower plane4.72
    3 upper plane2.42
    3 lower plane2.75
    4 upper plane3.84
    4 lower plane2.17
    5 upper plane2.11
    5 lower plane3.53
    6 upper plane3.56
    6 lower plane2.03
    7 upper plane2.33
    7 lower plane4.69
    下載: 導出CSV

    表  9  CeAlO3不同終止面的電子功函數

    Table  9.   Electronic work function of different termination surfaces of Ce2O3

    SurfaceTerminated planeWork function/eV
    10014.20
    21.96
    31.96
    44.64
    56.50
    11013.89
    22.73
    31.28
    45.94
    56.42
    11114.19
    25.18
    34.19
    44.01
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1

    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1
    [2] Zimer A M, De Carra M A S, Rios E C, et al. Initial stages of corrosion pits on AISI 1040 steel in sulfide solution analyzed by temporal series micrographs coupled with electrochemical techniques. Corros Sci, 2013, 76: 27 doi: 10.1016/j.corsci.2013.04.054
    [3] Frankel G S. Pitting corrosion of metals: A review of the critical factors. J Electrochem Soc, 1998, 145(6): 2186 doi: 10.1149/1.1838615
    [4] Zhang J, Zhang L F. Application and research progress of rare earth elements in stainless steels. J Yanshan Univ, 2020, 44(3): 267 doi: 10.3969/j.issn.1007-791X.2020.03.008

    張繼, 張立峰. 稀土元素在不銹鋼中的應用及研究進展. 燕山大學學報, 2020, 44(3):267 doi: 10.3969/j.issn.1007-791X.2020.03.008
    [5] Ghahari S M, Davenport A J, Rayment T, et al. In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros Sci, 2011, 53(9): 2684 doi: 10.1016/j.corsci.2011.05.040
    [6] Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
    [7] Li Y B, Wang F M, Li C R, et al. Effect of cerium on pitting resistance of low sulphur ferritic stainless steels. Chin Rare Earths, 2010, 31(3): 30 doi: 10.3969/j.issn.1004-0277.2010.03.007

    李亞波, 王福明, 李長榮, 等. 鈰對低硫鐵素體不銹鋼抗點蝕性能的影響. 稀土, 2010, 31(3):30 doi: 10.3969/j.issn.1004-0277.2010.03.007
    [8] Cai G J, Li C S. Effects of Ce on inclusions and corrosion resistance of low-nickel austenite stainless steel. Mater Corros, 2015, 66(12): 1445 doi: 10.1002/maco.201508380
    [9] Xi X J, Yang S F, Li J S, et al. Inclusion modification and corrosion resistance optimization of 304 stainless steel containing cerium. Iron Steel, 2020, 55(1): 20

    習小軍, 楊樹峰, 李京社, 等. 含鈰304不銹鋼夾雜物改性及耐腐蝕性能優化. 鋼鐵, 2020, 55(1):20
    [10] Cai G J, Pang Y T, Huang Y R, et al. Roles of inclusion, texture and grain boundary in corrosion resistance of low-nickel austenite stainless steel containing Ce. ISIJ Int, 2019, 59(12): 2302 doi: 10.2355/isijinternational.ISIJINT-2019-248
    [11] Liu X, Wang L M. Effect of Ce on the inclusions and pitting resistance of 2Cr13 stainless steel. Adv Mater Res, 2012, 602-604: 376 doi: 10.4028/www.scientific.net/AMR.602-604.376
    [12] Zhang J, Su C M, Chen X P, et al. First-principles study on pitting corrosion of Al deoxidation stainless steel with rare earth element (La) treatment. Mater Today Commun, 2021, 27: 102204 doi: 10.1016/j.mtcomm.2021.102204
    [13] Li W, Li D Y. Variations of work function and corrosion behaviors of deformed copper surfaces. Appl Surf Sci, 2005, 240(1-4): 388 doi: 10.1016/j.apsusc.2004.07.017
    [14] Hou Y H, Liu L L, Li G Q, et al. The correlation between potential difference and galvanic corrosion of composite inclusions/steel matrix in steel // The 12th Proceedings of China Iron & Steel Annual Meeting. Beijing, 2019: 510

    侯延輝, 劉林利, 李光強, 等. 鋼中復合夾雜物/鋼基體的電勢差與電偶腐蝕的關系 // 第十二屆中國鋼鐵年會論文集. 北京, 2019:510
    [15] Kresse C, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
    [16] Sweeney J S, Heinz D L. Compression of α-MnS (alabandite) and a new high-pressure phase. Phys Chem Miner, 1993, 20(1): 63
    [17] Bl?chl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953 doi: 10.1103/PhysRevB.50.17953
    [18] Cao Y X, Li G Q, Hou Y H, et al. DFT study on the mechanism of inclusion-induced initial pitting corrosion of Al?Ti?Ca complex deoxidized steel with Ce treatment. Phys B Condens Matter, 2019, 558: 10 doi: 10.1016/j.physb.2019.01.027
    [19] ?nmark N, Karasev A, J?nsson P G. The effect of different non-metallic inclusions on the machinability of steels. Mater (Basel Switz), 2015, 8(2): 751 doi: 10.3390/ma8020751
    [20] Wilson W G, Kay D A R, Vahed A. The use of thermodynamics and phase equilibria to predict the behavior of the rare earth elements in steel. JOM, 1974, 26(5): 14 doi: 10.1007/BF03355873
    [21] Mattsson T R, Mattsson A E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys Rev B, 2002, 66(21): 214110 doi: 10.1103/PhysRevB.66.214110
    [22] Liu X J, Yang J C, Zhang F, et al. Experimental and DFT study on cerium inclusions in clean steels. J Rare Earths, 2021, 39(4): 477 doi: 10.1016/j.jre.2020.07.021
    [23] Michaelson H B. The work function of the elements and its periodicity. J Appl Phys, 1977, 48(11): 4729 doi: 10.1063/1.323539
    [24] Tyson W R, Miller W A. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci, 1977, 62(1): 267 doi: 10.1016/0039-6028(77)90442-3
    [25] Hou Y H, Wang J R, Liu L L, et al. Mechanism of pitting corrosion induced by inclusions in Al-Ti-Mg deoxidized high strength pipeline steel. Micron, 2020, 138: 102898 doi: 10.1016/j.micron.2020.102898
    [26] Skriver H L, Rosengaard N M. Surface energy and work function of elemental metals. Phys Rev B Condens Matter, 1992, 46(11): 7157 doi: 10.1103/PhysRevB.46.7157
    [27] Chamati H, Papanicolaou N I, Mishin Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(1 0 0). Surf Sci, 2006, 600(9): 1793 doi: 10.1016/j.susc.2006.02.010
    [28] Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel. Corros Sci, 2015, 100: 295 doi: 10.1016/j.corsci.2015.08.009
    [29] Jeon S H, Kim S T, Lee I S, et al. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2. Corros Sci, 2010, 52(10): 3537 doi: 10.1016/j.corsci.2010.07.002
    [30] Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels. Appl Surf Sci, 2019, 475: 83 doi: 10.1016/j.apsusc.2018.12.243
    [31] Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel. J Mater Sci Technol, 2021, 93: 232 doi: 10.1016/j.jmst.2021.03.014
  • 加載中
圖(14) / 表(9)
計量
  • 文章訪問數:  2524
  • HTML全文瀏覽量:  220
  • PDF下載量:  105
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-04
  • 網絡出版日期:  2022-05-05
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回