<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

生物質微波制氫工藝溫控仿真及工業設計優化

吳斯侃 肖彬 王鑫 張彪 王博 宋永一

吳斯侃, 肖彬, 王鑫, 張彪, 王博, 宋永一. 生物質微波制氫工藝溫控仿真及工業設計優化[J]. 工程科學學報, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001
引用本文: 吳斯侃, 肖彬, 王鑫, 張彪, 王博, 宋永一. 生物質微波制氫工藝溫控仿真及工業設計優化[J]. 工程科學學報, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001
WU Si-kan, XIAO Bin, WANG Xin, ZHANG Biao, WANG Bo, SONG Yong-yi. Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves[J]. Chinese Journal of Engineering, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001
Citation: WU Si-kan, XIAO Bin, WANG Xin, ZHANG Biao, WANG Bo, SONG Yong-yi. Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves[J]. Chinese Journal of Engineering, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001

生物質微波制氫工藝溫控仿真及工業設計優化

doi: 10.13374/j.issn2095-9389.2022.01.27.001
基金項目: 中國石油化工集團公司科技項目(總合-141903);大連市支持高層次人才創新創業項目(2020RJ10)
詳細信息
    作者簡介:

    吳斯侃。第一作者:吳斯侃(1989-),男,工程碩士,助理研究員(自然科學)

    通訊作者:

    E-mail: wusikan.fshy@sinopec.com

  • 中圖分類號: TK6

Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves

More Information
  • 摘要: 利用微波對生物質進行熱解制氫是一種高效、快速、環保的技術手段,由于木質素是自然界唯一可再生的芳香碳氫資源,因此以木質素為主的林木類生物質是一種很好的制氫原料。目前制約其工業化的因素主要來自微波熱點效應,因此本文通過生物質在不同微波頻率下的穿透深度,對反應器進行整體建模設計,并通過正交設計仿真、CFD及HYSYS模擬來分別獲得均勻溫度場的工況條件、最佳反應器高徑比以及工業化裝置最大產品量時的操作參數。結果表明,當微波功率密度為30 W·g–1, 物料顆粒半徑為4 mm,物料堆積密度為800 kg·m–3,反應器高徑比為2.0,水蒸氣中段和末段通量分別為290和1230 m3·h–1時,可以獲得最大量氫氣產品且溫度場均勻,此時溫度場的變異系數為0.009,氫氣的產量為922.98 m3·h–1,摩爾分數為0.4781,產率為82.49%。

     

  • 圖  1  不同微波頻率下的生物質料對比. (a) 介電常數; (b) 損耗角正切; (c) 穿透深度

    Figure  1.  Comparison of biomass at different microwave frequencies: (a) permittivity; (b) loss tangent; (c) penetration depth

    圖  2  微波螺旋床反應器建模示意圖

    Figure  2.  Modeling diagram of the microwave reactor with screw shaft

    圖  3  微波制氫工業放大裝置建模示意圖

    Figure  3.  Modeling diagram of hydrogen production by microwaves on industrial scale

    圖  4  生物質微波熱解正交設計模擬升溫曲線圖

    Figure  4.  Simulated of heating curves of microwave pyrolysis from biomass by orthogonal experimental design

    圖  5  生物質微波熱解正交設計模擬溫度分布圖

    Figure  5.  Simulated of temperature distributions of microwave pyrolysis from biomass by orthogonal experimental design

    圖  6  反應器不同高徑比時的氫氣流動模擬云圖

    Figure  6.  Cloud image of hydrogen production in the reactor with different aspect ratios

    圖  7  生物質微波熱解制氫工藝設計流程圖

    Figure  7.  Flowchart of hydrogen production by microwave pyrolysis from biomass

    圖  8  不同水蒸氣流量中的氫氣分布. (a) 中段摩爾分數; (b) 中段產量; (c) 末段摩爾分數; (d) 末段產量和熱能余量

    Figure  8.  Distribution of hydrogen production at different steam flows: (a)mole fraction of mid-piece; (b) output of mid-piece; (c) mole fraction of end-piece; (d) output of end-piece and thermal energy margin

    表  1  正交設計試驗

    Table  1.   Orthogonal experimental design

    No.Microwave power density/ (W·g–1)Radius /mmBulk density /(kg·m–3)
    1101300
    2104500
    31010800
    4301500
    5304800
    63010300
    7501800
    8504300
    95010500
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang A J, Wang Y, Yu Z Q, et al. Advances in hydrodeoxygenation catalysts for upgrading bio-oils. J Dalian Univ Technol, 2016, 56(3): 321 doi: 10.7511/dllgxb201603016

    王安杰, 王瑤, 遇治權, 等. 生物質油提質加氫脫氧催化劑研究進展. 大連理工大學學報, 2016, 56(3):321 doi: 10.7511/dllgxb201603016
    [2] Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in situ hydrogenation technology. CIESC J, 2021, 72(4): 1783

    顏蓓蓓, 王建, 劉彬, 等. 生物油金屬水熱原位加氫提質技術研究進展. 化工學報, 2021, 72(4):1783
    [3] Gu S, Yang H X, Miao W, et al. Progress in bio-oil refining technology. Chem Ind For Prod, 2012, 32(2): 55

    顧帥, 楊洪雪, 苗瑋, 等. 生物油精制技術研究進展. 林產化學與工業, 2012, 32(2):55
    [4] Demirba? A. Relationships between lignin contents and heating values of biomass. Energy Convers Manag, 2001, 42(2): 183 doi: 10.1016/S0196-8904(00)00050-9
    [5] ?ukajtis R, Ho?owacz I, Kucharska K, et al. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev, 2018, 91: 665 doi: 10.1016/j.rser.2018.04.043
    [6] Show K Y, Yan Y G, Ling M, et al. Hydrogen production from algal biomass-Advances, challenges and prospects. Bioresour Technol, 2018, 257: 290 doi: 10.1016/j.biortech.2018.02.105
    [7] Li G X, Wang S, Zhao J G, et al. Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming. Energy, 2020, 199: 117488 doi: 10.1016/j.energy.2020.117488
    [8] Fang X C, Zhang Z Q, Weng Y B, et al. Research progress of microwave pyrolysis technology for coal. Chem Ind Eng Prog, 2013, 32(8): 1725

    方向晨, 張忠清, 翁延博, 等. 煤炭的微波干餾技術研究進展. 化工進展, 2013, 32(8):1725
    [9] Zhao C, Jiang L J. Research progress in microwave pyrolysis for coal in the low-temperature carbonization. Contemp Chem Ind, 2013, 42(12): 1706 doi: 10.3969/j.issn.1671-0460.2013.12.032

    趙闖, 蔣立敬. 煤炭低溫干餾微波加熱技術的研究進展. 當代化工, 2013, 42(12):1706 doi: 10.3969/j.issn.1671-0460.2013.12.032
    [10] Peng J H, Liu B G, Zhang L B, et al. Research status and trend of high-temperature microwave metallurgy reactor. Chin J Nonferrous Met, 2011, 21(10): 2607 doi: 10.19476/j.ysxb.1004.0609.2011.10.026

    彭金輝, 劉秉國, 張利波, 等. 高溫微波冶金反應器的研究現狀及發展趨勢. 中國有色金屬學報, 2011, 21(10):2607 doi: 10.19476/j.ysxb.1004.0609.2011.10.026
    [11] Cai W Q, Li H Q, Zhang Y. Recent development of microwave radiation application in metallurgical processes. Chin J Process Eng, 2005, 5(2): 228 doi: 10.3321/j.issn:1009-606X.2005.02.026

    蔡衛權, 李會泉, 張懿. 微波技術在冶金中的應用. 過程工程學報, 2005, 5(2):228 doi: 10.3321/j.issn:1009-606X.2005.02.026
    [12] Feng K L, Chen J, Chen G, et al. Application and research progress of microwave heating technology in typical metallurgical process. Min Metall, 2018, 27(2): 63 doi: 10.3969/j.issn.1005-7854.2018.02.014

    馮康露, 陳晉, 陳菓, 等. 微波加熱應用于冶金工藝的研究進展. 礦冶, 2018, 27(2):63 doi: 10.3969/j.issn.1005-7854.2018.02.014
    [13] Taheri-Shakib J, Kantzas A. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 2021, 305: 121519 doi: 10.1016/j.fuel.2021.121519
    [14] Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl Phys Lett, 2018, 112(21): 211108 doi: 10.1063/1.5028357
    [15] Wu Q Y, Zhang C X, Sun K, et al. Microwave-assisted synthesis and photocatalytic performance of a soluble porphyrinic MOF. Acta Chimica Sin, 2020, 78(7): 688 doi: 10.6023/A20050141

    吳淺耶, 張晨曦, 孫康, 等. 一種可溶性卟啉MOF的微波輔助合成及其光催化性能. 化學學報, 2020, 78(7):688 doi: 10.6023/A20050141
    [16] Liu S G, Deng W Y, Su Y X, et al. Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production. Chem Ind Eng Prog, 2014, 33(12): 3405

    劉樹剛, 鄧文義, 蘇亞欣, 等. 微波輻射下污泥殘渣催化甲烷裂解制氫. 化工進展, 2014, 33(12):3405
    [17] Kim D, Kim G, Oh D Y, et al. Enhanced hydrogen production from anaerobically digested sludge using microwave assisted pyrolysis. Fuel, 2022, 314: 123091 doi: 10.1016/j.fuel.2021.123091
    [18] Rincón R, Mu?oz J, Morales-Calero F J, et al. Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition. Appl Energy, 2021, 294: 116948 doi: 10.1016/j.apenergy.2021.116948
    [19] Huang M. Mechanism and Application of Interaction between Microwave and Granular Materials [Dissertation]. Kunming: Kunming University of Science and Technology, 2006

    黃銘. 微波與顆粒物質相互作用的機理及應用研究[學位論文]. 昆明: 昆明理工大學, 2006
    [20] Wu S K, Song Y Y, Wang X, et al. Research progress in influence of dielectric properties of materials on microwave heating. Contemp Chem Ind, 2020, 49(9): 1987 doi: 10.3969/j.issn.1671-0460.2020.09.035

    吳斯侃, 宋永一, 王鑫, 等. 物質介電特性對微波加熱影響研究進展. 當代化工, 2020, 49(9):1987 doi: 10.3969/j.issn.1671-0460.2020.09.035
    [21] Lv S N, Zeng Y J, Wen J, et al. Estimation of penetration depth from soil effective temperature in microwave radiometry. Remote Sens, 2018, 10(4): 519 doi: 10.3390/rs10040519
    [22] Meredith R. Engineers' handbook of industrial microwave heating. Power Eng J, 1999, 13(1): 3 doi: 10.1049/pe:19990102
    [23] Portis A M. Electromagnetic Fields: Sources and Media. New York: John Wiley & Sons Inc, 1978
    [24] Sokolichin A, Eigenberger G, Lapin A, et al. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange. Chem Eng Sci, 1997, 52(4): 611 doi: 10.1016/S0009-2509(96)00425-3
    [25] Senior T B A. Impedance boundary conditions for imperfectly conducting surfaces. Appl sci Res, 1960, 8(1): 418 doi: 10.1007/BF02920074
    [26] Hossan M R, Dutta P. Effects of temperature dependent properties in electromagnetic heating. Int J Heat Mass Transf, 2012, 55(13-14): 3412 doi: 10.1016/j.ijheatmasstransfer.2012.02.072
    [27] Dressler M, Edwards B J, ?ttinger H C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol Acta, 1999, 38(2): 117 doi: 10.1007/s003970050162
    [28] Wu Y M, Zhao Z L, Li H B, et al. Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol, 2009, 37(4): 427 doi: 10.3969/j.issn.0253-2409.2009.04.008

    吳逸民, 趙增立, 李海濱, 等. 生物質主要組分低溫熱解研究. 燃料化學學報, 2009, 37(4):427 doi: 10.3969/j.issn.0253-2409.2009.04.008
    [29] Zhang J, Fan Z L, Lin X F, et al. Online measurement of products during fast pyrolysis of biomass. J Southeast Univ (Nat Sci Ed), 2005, 35(1): 16

    張軍, 范志林, 林曉芬, 徐益謙. 生物質快速熱解過程中產物的在線測定. 東南大學學報(自然科學版), 2005, 35(1):16
    [30] Li S Q, Li A M, Yan J H, et al. Pyrolysis of the biomass wastes pyrolysis in a rotary kiln ⅰ: Influences of reaction conditions on pyrolysis product distribution. Acta Energiae Solaris Sin, 2000, 21(4): 333

    李水清, 李愛民, 嚴建華, 等. 生物質廢棄物在回轉窯內熱解研究——Ⅰ. 熱解條件對熱解產物分布的影響. 太陽能學報, 2000, 21(4):333
    [31] Bu Q, Lei H W, Ren S J, et al. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol, 2011, 102(13): 7004 doi: 10.1016/j.biortech.2011.04.025
    [32] Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal, 2009, 52(3): 241 doi: 10.1007/s11244-008-9160-6
    [33] Kostas E T, Durán-Jiménez G, Shepherd B J, et al. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem Eng J, 2020, 387: 123404 doi: 10.1016/j.cej.2019.123404
    [34] Zhang J, Tahmasebi A, Omoriyekomwan J E, et al. Direct synthesis of hollow carbon nanofibers on bio-char during microwave pyrolysis of pine nut shell. J Anal Appl Pyrolysis, 2018, 130: 142 doi: 10.1016/j.jaap.2018.01.016
    [35] Huang F, Tahmasebi A, Maliutina K, et al. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Bioresour Technol, 2017, 245: 1067 doi: 10.1016/j.biortech.2017.08.093
    [36] Brown C E. Coefficient of Variation. Berlin: Springer Berlin Heidelberg, 1998
    [37] Wu S K, Song Y Y, Wang X, et al. Simulation and optimization of heating rate and thermal uniformity of microwave reactor for biomass pyrolysis. Chem Eng Sci, 2022, 250: 117386 doi: 10.1016/j.ces.2021.117386
    [38] Jeyapaul R, Shahabudeen P, Krishnaiah K. Quality management research by considering multi-response problems in the Taguchi method - a review. Int J Adv Manuf Technol, 2005, 26(11): 1331
    [39] Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. note I: Kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng, 2017, 5(4): 2867
    [40] Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. note II: Secondary gas-phase reactions and bio-oil formation. ACS Sustain Chem Eng, 2017, 5(4): 2882
    [41] Berdugo Vilches T, Marinkovic J, Seemann M, et al. Comparing active bed materials in a dual fluidized bed biomass gasifier: Olivine, bauxite, quartz-sand, and ilmenite. Energy Fuels, 2016, 30(6): 4848 doi: 10.1021/acs.energyfuels.6b00327
    [42] Zhang Z Y, Pang S S. Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier. Fuel, 2017, 188: 628 doi: 10.1016/j.fuel.2016.10.074
    [43] Schweitzer D, Gredinger A, Schmid M, et al. Steam gasification of wood pellets, sewage sludge and manure: Gasification performance and concentration of impurities. Biomass Bioenergy, 2018, 111: 308 doi: 10.1016/j.biombioe.2017.02.002
    [44] Pfeifer C, Rauch R, Hofbauer H. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res, 2004, 43(7): 1634 doi: 10.1021/ie030742b
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  468
  • HTML全文瀏覽量:  156
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-27
  • 網絡出版日期:  2022-04-01
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回