<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

熱處理對SLM-316L不銹鋼組織結構及鈍化行為的影響機制

段智為 滿成 崔中雨 董超芳 王昕 崔洪芝

段智為, 滿成, 崔中雨, 董超芳, 王昕, 崔洪芝. 熱處理對SLM-316L不銹鋼組織結構及鈍化行為的影響機制[J]. 工程科學學報, 2023, 45(4): 560-568. doi: 10.13374/j.issn2095-9389.2022.01.26.002
引用本文: 段智為, 滿成, 崔中雨, 董超芳, 王昕, 崔洪芝. 熱處理對SLM-316L不銹鋼組織結構及鈍化行為的影響機制[J]. 工程科學學報, 2023, 45(4): 560-568. doi: 10.13374/j.issn2095-9389.2022.01.26.002
DUAN Zhi-wei, MAN Cheng, CUI Zhong-yu, DONG Chao-fang, WANG Xin, CUI Hong-zhi. Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting[J]. Chinese Journal of Engineering, 2023, 45(4): 560-568. doi: 10.13374/j.issn2095-9389.2022.01.26.002
Citation: DUAN Zhi-wei, MAN Cheng, CUI Zhong-yu, DONG Chao-fang, WANG Xin, CUI Hong-zhi. Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting[J]. Chinese Journal of Engineering, 2023, 45(4): 560-568. doi: 10.13374/j.issn2095-9389.2022.01.26.002

熱處理對SLM-316L不銹鋼組織結構及鈍化行為的影響機制

doi: 10.13374/j.issn2095-9389.2022.01.26.002
基金項目: 國家自然科學基金資助項目(51901216)
詳細信息
    通訊作者:

    E-mail: mancheng@ouc.edu.cn

  • 中圖分類號: TG172.6

Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting

More Information
  • 摘要: 對SLM-316L不銹鋼在900 ℃下進行不同時間的熱處理,結合熱處理后SLM-316L不銹鋼的組織結構和腐蝕行為研究,揭示了SLM-316L不銹鋼在900 ℃熱處理過程中組織結構的演變規律以及其對鈍化行為的作用機制。研究結果表明,900 ℃熱處理時,在組織結構方面,SLM-316L不銹鋼晶粒的基本形狀和尺寸沒有明顯變化,但是隨著保溫時間延長,SLM-316L不銹鋼中的位錯和亞晶界逐漸消失,同時伴有MnS顆粒物沿晶界析出;在耐蝕性能方面,熱處理對SLM-316L不銹鋼的耐蝕性能產生重要影響,在含有NaCl的緩沖溶液中,SLM-316L不銹鋼的點蝕電位隨著保溫時間延長逐漸降低,同時電化學阻抗逐漸減小;此外,在鈍化膜性質方面,不同熱處理時間試樣上形成的鈍化膜有明顯差異,隨著保溫時間延長,SLM-316L不銹鋼鈍化膜的厚度逐漸減小,載流子的密度以及擴散系數變大。最后,通過構建不銹鋼鈍化膜能帶結構和空間電荷層的理論模型,討論了熱處理對SLM-316L不銹鋼鈍化行為的影響機制。

     

  • 圖  1  900 ℃時不同熱處理時間下SLM-316L不銹鋼的TEM組織結構分析. (a)~(a1)未熱處理;(b)~(b1) 0.5 h;(c)~(c1) 5.0 h;(d) 5.0 h試樣中MnS及能譜分析

    Figure  1.  TEM images of SLM-316L SS with different heating treatment time at 900 ℃: (a)–(a1) as-received sample; (b)–(b1) 0.5 h; (c)–(c1) 5.0 h; (d) MnS inclusion in the sample heated for 5.0 h and EDS analysis

    圖  2  不同熱處理時間下SLM 316L不銹鋼在硼酸–硼酸鈉緩沖溶液中的動電位極化曲線.(a) 未添加NaCl;(b) 添加0.1 mol·L–1 NaCl

    Figure  2.  Potentiodynamic polarization curves of the buffer solutions: (a) without NaCl; (b) with 0.1 mol·L–1 NaCl

    圖  3  不同熱處理時間下SLM-316L不銹鋼在硼酸–硼酸鈉溶液中的電化學阻抗圖譜. (a) Nyquist圖;(b) Bode圖

    Figure  3.  EIS results of SLM-316L SS with different heat treatment in buffer solution: (a) Nyquist diagram; (b) Bode diagram

    圖  4  擬合EIS結果的等效電路圖

    Figure  4.  Equivalent circuit used for EIS fitting

    圖  5  根據擬合結果計算的電容和鈍化膜厚度

    Figure  5.  Capacitance and film thickness calculated using the fitting results

    圖  6  不同熱處理時間SLM-316L不銹鋼在硼酸–硼酸鈉緩沖溶液中恒電位極化1 h的lgi–lgt曲線以及鈍化因子k的擬合值.(a)~(e) 保溫時間分別為0、0.5、1.0、3.0和5.0 h;(f) 鈍化因子k

    Figure  6.  Double logarithmic curves of lgi–lgt during potentiostatic polarization for 1 h of SLM-316L SS with different heat treatment: (a)–(e) 0, 0.5, 1.0, 3.0, and 5.0 h; (f) fitting values of passivation factor k

    圖  7  SLM-316L不銹鋼Mott-Schottky分析結果. (a)未熱處理試樣的Mott-Schottky曲線;(b)平帶電位;(c) 載流子密度;(d) 擴散系數

    Figure  7.  Analysis of the Mott-Schottky curvefor SLM- 316L SS: (a) Mott-Schottky curve of the as-received SLM-316L SS; (b) flat band potentials; (c) carrier density; (d) diffusion coefficient

    圖  8  不銹鋼鈍化膜相關的理論模型. (a) 點缺陷模型,間隙陽離子(Mix+)、氧空位(VO)、陽離子空位(VMx);(b) 鈍化膜的能帶結構和空間電荷層

    Figure  8.  Models related to the passive film: (a) PDM; (b) energy band structure and space charge layer

    表  1  AISI316L不銹鋼的化學成分(質量分數)

    Table  1.   Composition of AISI 316L stainless steel powders %

    CrNiMoMnSiCPSFe
    17.510.42.71.20.40.02≤0.02≤0.01Bal.
    下載: 導出CSV

    表  2  圖4中EIS數據擬合結果

    Table  2.   Fitting result of the EIS data in Fig.4

    Heat treatment/hRS / (Ω·cm2Q1Rd/(Ω·cm2Q2R2/(105 Ω·cm2
    Y0 /(10–5 Ω–1·cm–2·snn1Y0 /(10–5 Ω–1·cm–2·snn2
    073.698.2010.807136.72.0610.8031.420
    0.574.898.4080.81440.842.9580.8911.237
    1.071.837.1380.80634.852.9260.7851.062
    3.065.688.6260.81241.303.3520.8721.216
    5.073.358.9820.811157.53.4410.7710.665
    下載: 導出CSV

    表  3  Mott-Schottky曲線的擬合結果

    Table  3.   Fitting result of Mott-Schottky curves

    Heating time/hω1/(1020 cm?3)ω2/(1020 cm?3)b/V?1
    03.60±0.132.95±0.09?4.63±0.69
    0.53.39±0.152.88±0.13?4.63±0.85
    1.03.07±0.152.87±0.10?3.40±0.42
    3.02.95±0.242.71±0.13?3.84±0.10
    5.02.32±0.401.54±0.33?2.08±0.98
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Todd I. Metallurgy: No more tears for metal 3D printing. Nature, 2017, 549(7672): 342 doi: 10.1038/549342a
    [2] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys. Nature, 2017, 549(7672): 365 doi: 10.1038/nature23894
    [3] Liang X, Hor A, Robert C, et al. High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode. Int J Fatigue, 2022, 160: 106843 doi: 10.1016/j.ijfatigue.2022.106843
    [4] Contuzzi N, Campanelli S L, Ludovico A D. 3D finite element analysis in the selective laser melting process. Int J Simul Model, 2011, 10(3): 113 doi: 10.2507/IJSIMM10(3)1.169
    [5] Bertsch K M, Meric de Bellefon G, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater, 2020, 199: 19 doi: 10.1016/j.actamat.2020.07.063
    [6] Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting. Mater Lett, 2019, 243: 157 doi: 10.1016/j.matlet.2019.02.047
    [7] Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
    [8] Sato N, Cohen M. The kinetics of anodic oxidation of iron in neutral solution: I. Steady growth region. J Electrochem Soc, 1964, 111(5): 512
    [9] Vetter K J. General kinetics of passive layers on metals. Electrochimica Acta, 1971, 16(11): 1923 doi: 10.1016/0013-4686(71)85147-2
    [10] MacDonald D D. The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 2011, 56(4): 1761 doi: 10.1016/j.electacta.2010.11.005
    [11] Kong D, Ni X, Dong C, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim Acta, 2018, 276: 293 doi: 10.1016/j.electacta.2018.04.188
    [12] Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores. Corros Sci, 2020, 167: 108520 doi: 10.1016/j.corsci.2020.108520
    [13] Deng P, Song M, Yang J, et al. On the thermal coarsening and transformation of nanoscale oxide inclusions in 316L stainless steel manufactured by laser powder bed fusion and its influence on impact toughness. Mater Sci Eng A, 2022, 835: 142690 doi: 10.1016/j.msea.2022.142690
    [14] Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of alloy 31 in a heavy brine LiBr solution. Electrochimica Acta, 2013, 95: 1 doi: 10.1016/j.electacta.2013.02.024
    [15] Betova I, Bojinov M, Laitinen T, et al. The transpassive dissolution mechanism of highly alloyed stainless steels. Corros Sci, 2002, 44(12): 2675 doi: 10.1016/S0010-938X(02)00073-2
    [16] Wang Y, Yan X Y, Man C, et al. Microstructure and corrosion behavior of SLM-Ti6Al4V with different fabrication angles in F--containing solutions. Chin J Eng, 2021, 43(5): 676

    王堯, 閻笑盈, 滿成, 等. 不同打印角度SLM-Ti6Al4V組織結構及其在含氟離子溶液中的腐蝕行為. 工程科學學報, 2021, 43(5):676
    [17] Guitián B, Nóvoa X R, Puga B. Electrochemical Impedance Spectroscopy as a tool for materials selection: Water for haemodialysis. Electrochimica Acta, 2011, 56(23): 7772 doi: 10.1016/j.electacta.2011.03.055
    [18] Gui?ón-Pina V, Igual-Mu?oz A, García-Antón J. Influence of pH on the electrochemical behaviour of a duplex stainless steel in highly concentrated LiBr solutions. Corros Sci, 2011, 53(2): 575 doi: 10.1016/j.corsci.2010.09.066
    [19] Qiao Y X, Zheng Y G, Okafor P C, et al. Electrochemical behaviour of high nitrogen bearing stainless steel in acidic chloride solution: Effects of oxygen, acid concentration and surface roughness. Electrochimica Acta, 2009, 54(8): 2298 doi: 10.1016/j.electacta.2008.10.038
    [20] Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy. Corros Sci, 2003, 45(4): 817 doi: 10.1016/S0010-938X(02)00131-2
    [21] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel. Electrochimica Acta, 1999, 44(17): 2947 doi: 10.1016/S0013-4686(99)00011-0
    [22] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy. Corros Sci, 2010, 52(11): 3646 doi: 10.1016/j.corsci.2010.07.013
    [23] Belo M D C, Hakiki N E, Ferreira M G S. Semiconducting properties of passive films formed on nickel-base alloys type alloy 600: Influence of the alloying elements. Electrochimica Acta, 1999, 44(14): 2473 doi: 10.1016/S0013-4686(98)00372-7
    [24] Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corros Sci, 2011, 53(10): 3186 doi: 10.1016/j.corsci.2011.05.063
    [25] MacDonald D D, Urquidi-Macdonald M. Theory of steady-state passive films. J Electrochem Soc, 1990, 137(8): 2395 doi: 10.1149/1.2086949
    [26] Ma J, Zhang B, Fu Y, et al. Effect of cold deformation on corrosion behavior of selective laser melted 316L stainless steel bipolar plates in a simulated environment for proton exchange membrane fuel cells. Corros Sci, 2022, 201: 110257 doi: 10.1016/j.corsci.2022.110257
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  489
  • HTML全文瀏覽量:  226
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-26
  • 網絡出版日期:  2022-04-19
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回