Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile
-
摘要: 以擠壓態的6013鋁合金為研究對象,通過顯微硬度測試、單向拉伸實驗和組織分析,研究了自然時效、人工時效和回歸再時效處理時合金的力學性能變化規律。結果表明:自然時效峰值狀態(16 d)的抗拉強度為286 MPa,屈服強度為158 MPa,屈強比為0.54,適合塑性成形;將自然時效峰值狀態下的試樣進行回歸再時效處理(210 °C回歸0.5 h+170 °C峰值時效2 h),抗拉強度為362 MPa,屈服強度為336 MPa,屈強比達到0.92,抗塑性變形能力顯著增強。這是因為回歸再時效后析出相的尺寸減小,數密度顯著增大,析出強化效果顯著增強。而析出強化對屈服強度和抗拉強度的影響程度不同,因此可通過時效熱處理來調控屈強比,即通過自然峰值時效提高合金的塑性變形性能以成形零件,而在零件成形后采用回歸再時效提高其抗變形能力。Abstract: Because of its high strength and good fracture toughness, 6013 aluminum alloy is widely used in auto and aircraft parts, such as the outer hood, outer decklid, and outer fuselage skin. An aluminum alloy must have good plastic forming ability in forming auto and aircraft parts and must have high deformation resistance in service. These performance requirements mainly depend on the yield ratio, that is, the ratio of yield strength to tensile strength. A lower yield ratio means larger deformation from the start of plastic deformation to the final fracture, which benefits formability. A higher yield ratio means higher plastic deformation resistance, which benefits service safety. In this paper, the mechanical properties and microstructure of the extruded 6013 aluminum alloy after natural aging, artificial aging, and retrogression re-aging are studied using microhardness tests, tensile tests, scanning electron microscopy, and transmission electron microscopy. The samples after the solid solution were naturally aged at room temperature and artificially aged at 170, 180, and 190 °C to determine the peak aging time. Then, after natural peak aging, the samples were heat-treated using the retrogression and re-aging process (retrogression at 200/210 °C for 0.5 h and re-aging at 170 °C). The results show that the tensile strength was 286 MPa, the yield strength was 158 MPa, and the yield ratio was 0.54 after natural peak aging for 16 d, which is suitable for plastic forming. The tensile strength was 362 MPa, the yield strength was 336 MPa, and the yield ratio reached 0.92 after the retrogression and re-aging process (retrogression at 210 °C for 0.5 h and peak re-aging at 170 °C for 2 h); the plastic deformation resistance was considerably enhanced. Compared with single-stage artificial aging, retrogression and re-aging can enhance the yield strength of 6013 aluminum alloy more substantially to break through the yield ratio limit in single-stage aging. Because the size of the precipitated phase decreases and the number density increases considerably after retrogression and re-aging, the precipitation strengthening effect is considerably enhanced. Precipitation strengthening has different effects on yield strength and tensile strength, so the yield strength ratio can be regulated by aging heat treatment. In other words, the plastic deformation and anti-deformation abilities of the alloy can be improved by natural peak aging and the retrogression and re-aging process, respectively.
-
Key words:
- 6013 aluminum alloy /
- yield ratio /
- natural aging /
- artificial aging /
- retrogression and re-aging
-
圖 9 不同時效峰值狀態下的SEM分析結果.(a)自然時效16 d;(b)190 °C人工時效5 h;(c)自然時效16 d-210 °C回歸處理0.5 h-170 °C再時效2 h;(d)A相的EDS能譜;(e)B相的EDS能譜
Figure 9. SEM analysis results of different peak aging states: (a) NA 16 d; (b) AA 190 °C/5 h; (c) NA 16 d-REA 210 °C/0.5 h-RA 170 °C/2 h; (d) EDS spectra of A phases; (e) EDS spectra of B phases
表 1 峰值時效狀態下的單向拉伸性能
Table 1. Uniaxial tensile properties under peak aging conditions
Aging process Tensile strength/MPa Yield strength/MPa Fracture elongation/% Yield ratio NA 16 d 286±1 158±1.5 35.0±1 0.54 AA 170 °C/11 h 345±4 289±2 28.3±0.25 0.83 AA 180 °C/8 h 347±3 291.5±1.5 26.5±1.75 0.84 AA 190 °C/5 h 353±2 293±2 22.8±1.25 0.84 表 2 回歸再時效峰值狀態下的單向拉伸性能
Table 2. Uniaxial tensile properties after the retrogression and re-aging peak
Aging process Tensile strength/MPa Yield strength/MPa Fracture elongation/% Yield ratio NA 16 d-REA 200 °C/
0.5 h
-RA 170°C/5 h351±3 315±8 20.0±1 0.89 NA 16 d-REA 210 °C/
0.5 h
-RA 170°C/2 h362±2 336±2 19.0±2 0.92 www.77susu.com -
參考文獻
[1] Marioara C, B?rvik T, Hopperstad O. The relation between grain boundary precipitate formation and adjacent grain orientations in Al–Mg–Si (-Cu) alloys. Philos Mag Lett, 2021, 101(9): 1 [2] Zhu S, Li Z H, Yan L Z, et al. Transformation behavior of precipitates during artificial aging at 170℃ in Al–Mg–Si-Cu alloys with and without Zn addition. Rare Met, 2021, 40(7): 1907 doi: 10.1007/s12598-020-01427-z [3] Feng Y C, Li L X, Liu J, et al. Effect of natural aging on microstructure and mechanical properties of 6061 aluminum alloy. Mater Mech Eng, 2011, 35(3): 18馮銀成, 李落星, 劉杰, 等. 自然時效對6061鋁合金顯微組織和力學性能的影響. 機械工程材料, 2011, 35(3):18 [4] Li B M, Ke Q, Zhang H T, et al. Research status and development trend of high strength and heat-resistant 6 × × × series aluminum alloys. Light Alloy Fabr Technol, 2021, 49(5): 8 doi: 10.13979/j.1007-7235.2021.05.002李寶綿, 柯奇, 張海濤, 等. 高強耐熱6×××系鋁合金的研究現狀及其發展趨勢. 輕合金加工技術, 2021, 49(5):8 doi: 10.13979/j.1007-7235.2021.05.002 [5] Sun L, Liu Z W, Zhang Y, et al. Effect of mass ratio of Mg to Si on the properties of 6 series aluminum alloys. Nonferrous Met Mater Eng, 2020, 41(2): 35孫亮, 劉兆偉, 張宇, 等. Mg和Si質量比對6系鋁合金性能的影響. 有色金屬材料與工程, 2020, 41(2):35 [6] Wang X F, Liu H, Tang X B. A comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys. Metall Res Technol, 2021, 118(2): 211 doi: 10.1051/metal/2021013 [7] Fan W L, Zheng Y Y, Bo Z H, et al. Effect of single-stage aging and thermo-mechanical treatment on properties of an Al–Mg–Si aluminum alloy(Mg/Si=1.15). Trans Mater Heat Treat, 2016, 37(6): 82范文麗, 鄭亞亞, 柏振海, 等. 單級時效和形變熱處理對新型Al–Mg–Si合金(Mg/Si=1.15)性能的影響. 材料熱處理學報, 2016, 37(6):82 [8] Qiu C, Guo S J, Ji Y L. Effect of AlMnSi dispersion particle size on recrystallization of 6061 aluminum alloy during homogenization. Heat Treat Met, 2020, 45(8): 27 doi: 10.13251/j.issn.0254-6051.2020.08.006邱楚, 郭世杰, 紀艷麗. 6061鋁合金均勻化過程中AlMnSi彌散顆粒的析出尺寸對再結晶行為的影響. 金屬熱處理, 2020, 45(8):27 doi: 10.13251/j.issn.0254-6051.2020.08.006 [9] Li H, Li Z T, Jin H Y, et al. Influence of pre-aging and bake hardening on microstructure and hardness of 6016 aluminum alloy. Heat Treat Met, 2017, 42(11): 148 doi: 10.13251/j.issn.0254-6051.2017.11.029李輝, 李鑄鐵, 晉宏炎, 等. 預時效及烤漆硬化處理對6016鋁合金顯微組織及硬度的影響. 金屬熱處理, 2017, 42(11):148 doi: 10.13251/j.issn.0254-6051.2017.11.029 [10] Wang X, Liu C P, Lü H B, et al. Effects of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy. Special Cast &Nonferrous Alloys, 2019, 39(1): 84 doi: 10.15980/j.tzzz.2019.01.023王鑫, 劉春鵬, 呂海波, 等. 回歸再時效對6082合金組織及電化學腐蝕性的影響. 特種鑄造及有色合金, 2019, 39(1):84 doi: 10.15980/j.tzzz.2019.01.023 [11] Wei Y. Effects of aging time on microstructure and mechanical properties of 6063 aluminum alloy for automobile. Hot Work Technol, 2020, 49(14): 134 doi: 10.14158/j.cnki.1001-3814.20192766魏玉. 時效時間對汽車用6063鋁合金組織與力學性能的影響. 熱加工工藝, 2020, 49(14):134 doi: 10.14158/j.cnki.1001-3814.20192766 [12] Shang B C, Yin Z M, Zhou X, et al. Effect of solution and aging treatment on microstructure and properties of hot extruded 6082 aluminum alloy bars. Trans Mater Heat Treat, 2011, 32(1): 77 doi: 10.13289/j.issn.1009-6264.2011.01.015商寶川, 尹志民, 周向, 等. 固溶-時效對6082合金擠壓棒材組織性能的影響. 材料熱處理學報, 2011, 32(1):77 doi: 10.13289/j.issn.1009-6264.2011.01.015 [13] Kim Y, Mishra R K, Sachdev A K, et al. A combined experimental-analytical modeling study of the artificial aging response of Al–Mg–Si alloys. Mater Sci Eng A, 2021, 820: 141566 doi: 10.1016/j.msea.2021.141566 [14] Khangholi S N, Javidani M, Maltais A, et al. Effects of natural aging and pre-aging on the strength and electrical conductivity in Al–Mg–Si AA6201 conductor alloys. Mater Sci Eng A, 2021, 820: 141538 doi: 10.1016/j.msea.2021.141538 [15] Yildiz R A, Yilmaz S. Stress-strain properties of artificially aged 6061 Al alloy: Experiments and modeling. J Mater Eng Perform, 2020, 29(9): 5764 doi: 10.1007/s11665-020-05080-6 [16] Liu G, Zhang G J, Ding X D, et al. A model for age strengthening of Al alloys with plate/disc-like or rod/needle-like precipitate. Rare Met Mater Eng, 2003, 32(12): 971 doi: 10.3321/j.issn:1002-185X.2003.12.002劉剛, 張國君, 丁向東, 等. 具有盤/片狀, 棒/針狀析出相鋁合金的時效-屈服強度變化模型. 稀有金屬材料與工程, 2003, 32(12):971 doi: 10.3321/j.issn:1002-185X.2003.12.002 [17] Ren Z W, Luo B H, Zheng Y Y, et al. Effect of Mg and Si content on microstructure and property of Al–Mg–Si alloy. Mater Rep, 2019, 33(18): 3072 doi: 10.11896/cldb.18070193任智煒, 羅兵輝, 鄭亞亞, 等. Mg、Si含量對Al–Mg–Si合金顯微組織與性能的影響. 材料導報, 2019, 33(18):3072 doi: 10.11896/cldb.18070193 [18] Ai S J, Chen K M, Xu X J, et al. Effect of aging on properties of Zr-Sr microalloyed 6013 aluminum alloy. Heat Treat Met, 2013, 38(6): 71 doi: 10.13251/j.issn.0254-6051.2013.06.030艾世杰, 陳康敏, 許曉靜, 等. 時效對鋯-鍶復合微合金化6013鋁合金性能的影響. 金屬熱處理, 2013, 38(6):71 doi: 10.13251/j.issn.0254-6051.2013.06.030 [19] Braun R. Investigations on the long-term stability of 6013-T6 sheet. Mater Charact, 2006, 56(2): 85 doi: 10.1016/j.matchar.2005.03.006 [20] Zhang G P. Effect of Heat Treatment Process on Microstructure and Properties of New 6XXX Series Aluminum Alloy. [Dissertation]. Changsha: Central South University, 2010張國鵬. 熱處理工藝對新型6XXX系鋁合金組織與性能的影響[學位論文]. 長沙: 中南大學, 2010 [21] Miao W, Laughlin D. Effects of Cu content and preaging on precipitation characteristics in Aluminum alloy 6022. Metall Mater Trans A, 2012, 31(2): 361 [22] Du P, Yan X D, Li Y L, et al. Transformation mechanism of iron-rich phase in 6061 aluminum alloy during homogenization. Chin J Nonferrous Met, 2011, 21(5): 981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007杜鵬, 閆曉東, 李彥利, 等. 6061鋁合金中富鐵相在均勻化過程中的相變機理. 中國有色金屬學報, 2011, 21(5):981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007 [23] Ma S Y, Zhang W J, Su R M, et al. Research status of regression and reaging on 7xxx series aluminum alloy. Nonferrous Met Sci Eng, 2022, 13(2): 38 doi: 10.13264/j.cnki.ysjskx.2022.02.006馬思怡, 張偉健, 蘇睿明, 等. 7xxx系鋁合金回歸再時效的研究現狀. 有色金屬科學與工程, 2022, 13(2):38 doi: 10.13264/j.cnki.ysjskx.2022.02.006 [24] Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy. Mater Rep, 2021, 35(8): 8108 doi: 10.11896/cldb.19120115丁鳳娟, 賈向東, 洪騰蛟, 等. 不同熱處理工藝對6061鋁合金塑性和硬度的影響. 材料導報, 2021, 35(8):8108 doi: 10.11896/cldb.19120115 [25] Engler O, Marioara C D, Aruga Y, et al. Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy AA 6016. Mater Sci Eng A, 2019, 759: 520 doi: 10.1016/j.msea.2019.05.073 [26] Ning A L, Sun Y, Huang J W. Effects of different ageing processes on microstructure and mechanical properties of 6063Aluminum alloy. Mater Mech Eng, 2013, 37(3): 28寧愛林, 孫瑜, 黃繼武. 不同時效工藝對6063鋁合金組織和力學性能的影響. 機械工程材料, 2013, 37(3):28 [27] Bahrami A, Miroux A, Sietsma J. An age-hardening model for Al–Mg–Si alloys considering needle-shaped precipitates. Metall Mater Trans, 2012, 43(11): 4445 doi: 10.1007/s11661-012-1211-8 -