<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

時效制度對6013鋁合金擠壓型材屈強比的影響

張瑞芳 許吉 馮鑫明 趙帆 張志豪

張瑞芳, 許吉, 馮鑫明, 趙帆, 張志豪. 時效制度對6013鋁合金擠壓型材屈強比的影響[J]. 工程科學學報, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001
引用本文: 張瑞芳, 許吉, 馮鑫明, 趙帆, 張志豪. 時效制度對6013鋁合金擠壓型材屈強比的影響[J]. 工程科學學報, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001
ZHANG Rui-fang, XU Ji, FENG Xin-ming, ZHAO Fan, ZHANG Zhi-hao. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile[J]. Chinese Journal of Engineering, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001
Citation: ZHANG Rui-fang, XU Ji, FENG Xin-ming, ZHAO Fan, ZHANG Zhi-hao. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile[J]. Chinese Journal of Engineering, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001

時效制度對6013鋁合金擠壓型材屈強比的影響

doi: 10.13374/j.issn2095-9389.2022.01.25.001
基金項目: 佛山市核心技術攻關資助項目(1920001000409);國家自然科學基金–遼寧聯合基金資助項目(U1708251)
詳細信息
    通訊作者:

    E-mail: ntzzh2279@163.com

  • 中圖分類號: TG166.3

Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile

More Information
  • 摘要: 以擠壓態的6013鋁合金為研究對象,通過顯微硬度測試、單向拉伸實驗和組織分析,研究了自然時效、人工時效和回歸再時效處理時合金的力學性能變化規律。結果表明:自然時效峰值狀態(16 d)的抗拉強度為286 MPa,屈服強度為158 MPa,屈強比為0.54,適合塑性成形;將自然時效峰值狀態下的試樣進行回歸再時效處理(210 °C回歸0.5 h+170 °C峰值時效2 h),抗拉強度為362 MPa,屈服強度為336 MPa,屈強比達到0.92,抗塑性變形能力顯著增強。這是因為回歸再時效后析出相的尺寸減小,數密度顯著增大,析出強化效果顯著增強。而析出強化對屈服強度和抗拉強度的影響程度不同,因此可通過時效熱處理來調控屈強比,即通過自然峰值時效提高合金的塑性變形性能以成形零件,而在零件成形后采用回歸再時效提高其抗變形能力。

     

  • 圖  1  板狀拉伸試樣(單位: mm)

    Figure  1.  Plate tensile sample (unit: mm)

    圖  2  單級時效硬度變化曲線. (a)人工時效;(b)自然時效

    Figure  2.  Hardness curves of one-step aging: (a) artificial aging; (b) natural aging

    圖  3  單級時效峰值狀態下材料的工程應力–應變曲線

    Figure  3.  Engineering stress–strain curves under peak aging conditions

    圖  4  彎曲實驗結果. (a)人工時效; (b)自然時效

    Figure  4.  Bending experiment results: (a) artificial aging; (b) natural aging

    圖  5  回歸再時效硬度變化曲線

    Figure  5.  Hardness change curves after retrogression and re-aging

    圖  6  回歸再時效峰值狀態下的工程應力–應變曲線

    Figure  6.  Engineering stress–strain curves after the retrogression and re-aging peak

    圖  7  不同峰值時效狀態下的斷口形貌.(a)自然時效16 d;(b)190 °C人工時效5 h;(c)自然時效16 d-210 °C回歸處理0.5 h-170 °C再時效2 h

    Figure  7.  Fracture morphology under different peak aging conditions: (a) NA 16 d; (b) AA 190 °C/5 h; (c) NA 16 d-REA 210 °C/0.5 h-RA 170 °C/2 h

    圖  8  不同時效峰值狀態下的X射線衍射圖.(a)自然時效16 d;(b)190 °C人工時效5 h;(c)自然時效16 d-210 °C回歸處理0.5 h-170 °C再時效2 h

    Figure  8.  XRD patterns of different peak aging states: (a) NA 16 d; (b) AA 190 °C/5 h; (c) NA 16 d-REA 210 °C/0.5 h-RA 170 °C/2 h

    圖  9  不同時效峰值狀態下的SEM分析結果.(a)自然時效16 d;(b)190 °C人工時效5 h;(c)自然時效16 d-210 °C回歸處理0.5 h-170 °C再時效2 h;(d)A相的EDS能譜;(e)B相的EDS能譜

    Figure  9.  SEM analysis results of different peak aging states: (a) NA 16 d; (b) AA 190 °C/5 h; (c) NA 16 d-REA 210 °C/0.5 h-RA 170 °C/2 h; (d) EDS spectra of A phases; (e) EDS spectra of B phases

    圖  10  不同時效峰值狀態下析出相的TEM形貌及電子衍射分析結果. (a,d)自然時效16 d;(b,e)190 °C人工時效5 h;(c,f)自然時效16 d-210 °C回歸處理0.5 h-170 °C再時效2 h

    Figure  10.  TEM morphologies and electron diffraction patterns of precipitation after different peak agings: (a,d) NA 16 d; (b,e) AA 190 °C/5 h; (c,f) NA 16 d-REA 210 °C/0.5 h-RA 170 °C/2 h

    表  1  峰值時效狀態下的單向拉伸性能

    Table  1.   Uniaxial tensile properties under peak aging conditions

    Aging processTensile strength/MPaYield strength/MPaFracture elongation/%Yield ratio
    NA 16 d286±1158±1.535.0±10.54
    AA 170 °C/11 h345±4289±228.3±0.250.83
    AA 180 °C/8 h347±3291.5±1.526.5±1.750.84
    AA 190 °C/5 h353±2293±222.8±1.250.84
    下載: 導出CSV

    表  2  回歸再時效峰值狀態下的單向拉伸性能

    Table  2.   Uniaxial tensile properties after the retrogression and re-aging peak

    Aging processTensile strength/MPaYield strength/MPaFracture elongation/%Yield ratio
    NA 16 d-REA 200 °C/
    0.5 h
    -RA 170°C/5 h
    351±3315±820.0±10.89
    NA 16 d-REA 210 °C/
    0.5 h
    -RA 170°C/2 h
    362±2336±219.0±20.92
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Marioara C, B?rvik T, Hopperstad O. The relation between grain boundary precipitate formation and adjacent grain orientations in Al–Mg–Si (-Cu) alloys. Philos Mag Lett, 2021, 101(9): 1
    [2] Zhu S, Li Z H, Yan L Z, et al. Transformation behavior of precipitates during artificial aging at 170℃ in Al–Mg–Si-Cu alloys with and without Zn addition. Rare Met, 2021, 40(7): 1907 doi: 10.1007/s12598-020-01427-z
    [3] Feng Y C, Li L X, Liu J, et al. Effect of natural aging on microstructure and mechanical properties of 6061 aluminum alloy. Mater Mech Eng, 2011, 35(3): 18

    馮銀成, 李落星, 劉杰, 等. 自然時效對6061鋁合金顯微組織和力學性能的影響. 機械工程材料, 2011, 35(3):18
    [4] Li B M, Ke Q, Zhang H T, et al. Research status and development trend of high strength and heat-resistant 6 × × × series aluminum alloys. Light Alloy Fabr Technol, 2021, 49(5): 8 doi: 10.13979/j.1007-7235.2021.05.002

    李寶綿, 柯奇, 張海濤, 等. 高強耐熱6×××系鋁合金的研究現狀及其發展趨勢. 輕合金加工技術, 2021, 49(5):8 doi: 10.13979/j.1007-7235.2021.05.002
    [5] Sun L, Liu Z W, Zhang Y, et al. Effect of mass ratio of Mg to Si on the properties of 6 series aluminum alloys. Nonferrous Met Mater Eng, 2020, 41(2): 35

    孫亮, 劉兆偉, 張宇, 等. Mg和Si質量比對6系鋁合金性能的影響. 有色金屬材料與工程, 2020, 41(2):35
    [6] Wang X F, Liu H, Tang X B. A comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys. Metall Res Technol, 2021, 118(2): 211 doi: 10.1051/metal/2021013
    [7] Fan W L, Zheng Y Y, Bo Z H, et al. Effect of single-stage aging and thermo-mechanical treatment on properties of an Al–Mg–Si aluminum alloy(Mg/Si=1.15). Trans Mater Heat Treat, 2016, 37(6): 82

    范文麗, 鄭亞亞, 柏振海, 等. 單級時效和形變熱處理對新型Al–Mg–Si合金(Mg/Si=1.15)性能的影響. 材料熱處理學報, 2016, 37(6):82
    [8] Qiu C, Guo S J, Ji Y L. Effect of AlMnSi dispersion particle size on recrystallization of 6061 aluminum alloy during homogenization. Heat Treat Met, 2020, 45(8): 27 doi: 10.13251/j.issn.0254-6051.2020.08.006

    邱楚, 郭世杰, 紀艷麗. 6061鋁合金均勻化過程中AlMnSi彌散顆粒的析出尺寸對再結晶行為的影響. 金屬熱處理, 2020, 45(8):27 doi: 10.13251/j.issn.0254-6051.2020.08.006
    [9] Li H, Li Z T, Jin H Y, et al. Influence of pre-aging and bake hardening on microstructure and hardness of 6016 aluminum alloy. Heat Treat Met, 2017, 42(11): 148 doi: 10.13251/j.issn.0254-6051.2017.11.029

    李輝, 李鑄鐵, 晉宏炎, 等. 預時效及烤漆硬化處理對6016鋁合金顯微組織及硬度的影響. 金屬熱處理, 2017, 42(11):148 doi: 10.13251/j.issn.0254-6051.2017.11.029
    [10] Wang X, Liu C P, Lü H B, et al. Effects of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy. Special Cast &Nonferrous Alloys, 2019, 39(1): 84 doi: 10.15980/j.tzzz.2019.01.023

    王鑫, 劉春鵬, 呂海波, 等. 回歸再時效對6082合金組織及電化學腐蝕性的影響. 特種鑄造及有色合金, 2019, 39(1):84 doi: 10.15980/j.tzzz.2019.01.023
    [11] Wei Y. Effects of aging time on microstructure and mechanical properties of 6063 aluminum alloy for automobile. Hot Work Technol, 2020, 49(14): 134 doi: 10.14158/j.cnki.1001-3814.20192766

    魏玉. 時效時間對汽車用6063鋁合金組織與力學性能的影響. 熱加工工藝, 2020, 49(14):134 doi: 10.14158/j.cnki.1001-3814.20192766
    [12] Shang B C, Yin Z M, Zhou X, et al. Effect of solution and aging treatment on microstructure and properties of hot extruded 6082 aluminum alloy bars. Trans Mater Heat Treat, 2011, 32(1): 77 doi: 10.13289/j.issn.1009-6264.2011.01.015

    商寶川, 尹志民, 周向, 等. 固溶-時效對6082合金擠壓棒材組織性能的影響. 材料熱處理學報, 2011, 32(1):77 doi: 10.13289/j.issn.1009-6264.2011.01.015
    [13] Kim Y, Mishra R K, Sachdev A K, et al. A combined experimental-analytical modeling study of the artificial aging response of Al–Mg–Si alloys. Mater Sci Eng A, 2021, 820: 141566 doi: 10.1016/j.msea.2021.141566
    [14] Khangholi S N, Javidani M, Maltais A, et al. Effects of natural aging and pre-aging on the strength and electrical conductivity in Al–Mg–Si AA6201 conductor alloys. Mater Sci Eng A, 2021, 820: 141538 doi: 10.1016/j.msea.2021.141538
    [15] Yildiz R A, Yilmaz S. Stress-strain properties of artificially aged 6061 Al alloy: Experiments and modeling. J Mater Eng Perform, 2020, 29(9): 5764 doi: 10.1007/s11665-020-05080-6
    [16] Liu G, Zhang G J, Ding X D, et al. A model for age strengthening of Al alloys with plate/disc-like or rod/needle-like precipitate. Rare Met Mater Eng, 2003, 32(12): 971 doi: 10.3321/j.issn:1002-185X.2003.12.002

    劉剛, 張國君, 丁向東, 等. 具有盤/片狀, 棒/針狀析出相鋁合金的時效-屈服強度變化模型. 稀有金屬材料與工程, 2003, 32(12):971 doi: 10.3321/j.issn:1002-185X.2003.12.002
    [17] Ren Z W, Luo B H, Zheng Y Y, et al. Effect of Mg and Si content on microstructure and property of Al–Mg–Si alloy. Mater Rep, 2019, 33(18): 3072 doi: 10.11896/cldb.18070193

    任智煒, 羅兵輝, 鄭亞亞, 等. Mg、Si含量對Al–Mg–Si合金顯微組織與性能的影響. 材料導報, 2019, 33(18):3072 doi: 10.11896/cldb.18070193
    [18] Ai S J, Chen K M, Xu X J, et al. Effect of aging on properties of Zr-Sr microalloyed 6013 aluminum alloy. Heat Treat Met, 2013, 38(6): 71 doi: 10.13251/j.issn.0254-6051.2013.06.030

    艾世杰, 陳康敏, 許曉靜, 等. 時效對鋯-鍶復合微合金化6013鋁合金性能的影響. 金屬熱處理, 2013, 38(6):71 doi: 10.13251/j.issn.0254-6051.2013.06.030
    [19] Braun R. Investigations on the long-term stability of 6013-T6 sheet. Mater Charact, 2006, 56(2): 85 doi: 10.1016/j.matchar.2005.03.006
    [20] Zhang G P. Effect of Heat Treatment Process on Microstructure and Properties of New 6XXX Series Aluminum Alloy. [Dissertation]. Changsha: Central South University, 2010

    張國鵬. 熱處理工藝對新型6XXX系鋁合金組織與性能的影響[學位論文]. 長沙: 中南大學, 2010
    [21] Miao W, Laughlin D. Effects of Cu content and preaging on precipitation characteristics in Aluminum alloy 6022. Metall Mater Trans A, 2012, 31(2): 361
    [22] Du P, Yan X D, Li Y L, et al. Transformation mechanism of iron-rich phase in 6061 aluminum alloy during homogenization. Chin J Nonferrous Met, 2011, 21(5): 981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007

    杜鵬, 閆曉東, 李彥利, 等. 6061鋁合金中富鐵相在均勻化過程中的相變機理. 中國有色金屬學報, 2011, 21(5):981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007
    [23] Ma S Y, Zhang W J, Su R M, et al. Research status of regression and reaging on 7xxx series aluminum alloy. Nonferrous Met Sci Eng, 2022, 13(2): 38 doi: 10.13264/j.cnki.ysjskx.2022.02.006

    馬思怡, 張偉健, 蘇睿明, 等. 7xxx系鋁合金回歸再時效的研究現狀. 有色金屬科學與工程, 2022, 13(2):38 doi: 10.13264/j.cnki.ysjskx.2022.02.006
    [24] Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy. Mater Rep, 2021, 35(8): 8108 doi: 10.11896/cldb.19120115

    丁鳳娟, 賈向東, 洪騰蛟, 等. 不同熱處理工藝對6061鋁合金塑性和硬度的影響. 材料導報, 2021, 35(8):8108 doi: 10.11896/cldb.19120115
    [25] Engler O, Marioara C D, Aruga Y, et al. Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy AA 6016. Mater Sci Eng A, 2019, 759: 520 doi: 10.1016/j.msea.2019.05.073
    [26] Ning A L, Sun Y, Huang J W. Effects of different ageing processes on microstructure and mechanical properties of 6063Aluminum alloy. Mater Mech Eng, 2013, 37(3): 28

    寧愛林, 孫瑜, 黃繼武. 不同時效工藝對6063鋁合金組織和力學性能的影響. 機械工程材料, 2013, 37(3):28
    [27] Bahrami A, Miroux A, Sietsma J. An age-hardening model for Al–Mg–Si alloys considering needle-shaped precipitates. Metall Mater Trans, 2012, 43(11): 4445 doi: 10.1007/s11661-012-1211-8
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  359
  • HTML全文瀏覽量:  163
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-25
  • 網絡出版日期:  2022-07-29
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回