-
摘要: 隨著科學技術的快速發展,微電子器件在不同領域得到越來越廣泛的應用。對于高集成化和高頻化的微電子器件,傳統的冷卻技術已很難滿足高效散熱的需求,因此對器件的可靠性與安全性帶來嚴重的影響。近年來,研究者提出了多種無源換熱過程強化技術,但是這些技術在不同程度上增加了流動阻力從而極大地限制了其應用潛力。超聲波技術具有成本低、使用簡便、操控靈活、穿透性強和無污染等特點,超聲波與散熱技術相結合實現有源換熱過程強化已逐漸引起研究者的關注和重視。本文對超聲波激勵換熱過程強化的研究進展進行了系統綜述,首先介紹超聲波強化換熱的機理,然后總結并分析超聲波技術在單相氣體對流、單相液體對流、池沸騰和流動沸騰換熱過程中的理論和實驗研究,最后討論超聲波換熱技術面臨的若干挑戰并提出未來潛在的發展方向,為構建高性能和實用化超聲波換熱體系提供相應的參考。Abstract: Microscale electronic devices offer promising application capabilities in various fields, such as information, aeronautics and astronautics, energy, and chemical engineering. Specifically, the exceptional performance of high-integration and high-frequency devices leads to a significant heat flux enhancement. Conventional air and liquid cooling techniques struggle to meet the efficient heat dissipation requirement, affecting the reliability and safety of microscale electronic devices significantly. Many types of passive heat transfer process intensification strategies have been proposed recently, such as those based on adjusting element structure, surface roughness, surface hydrophobicity, and channel dimension. However, these passive strategies increase flow resistance to some extent, limiting their applicability. Ultrasound has several unique characteristics, including low cost, simple operation, flexible control, strong penetrability, and good biocompatibility. These characteristics make ultrasound a promising candidate for use in national defense, biomedical theranostics, agriculture, food, the environment, and materials. Researchers have paid considerable attention to the integration of ultrasound with heat transfer techniques, which has gradually become one of the key research directions for heat transfer enhancement. This paper aims to provide a comprehensive overview of the research progress on the intensification of the ultrasound-excited heat transfer process. First, the principles of ultrasound-excited heat transfer enhancement are introduced, and two major acoustic phenomena, acoustic cavitation and acoustic streaming, are highlighted. Theoretical and experimental studies on ultrasound-excited single-phase gas convection, single-phase liquid convection, pool boiling, and flow boiling heat transfer process intensification are then summarized, and typical studies in these fields are categorized and discussed in depth. Finally, current challenges and future directions are presented, such as simple numerical simulation models that should consider multiphysics and multidomain constraints for accurately representing the practical heat transfer process, lack of sufficient characterization methods that should develop new and integrated visualization techniques for precisely monitoring heat transfer performance, limited focus on other acoustic phenomena other than acoustic streaming and acoustic cavitation that should provide a comprehensive analysis for revealing the in-depth heat transfer mechanisms, and few attempts and pathways to industrialization that should demand researchers from different disciplines to work together and collaboratively. It is hoped that this review article will not only reveal the unprecedented functionality of ultrasound for heat transfer enhancement but will also provide critical guidelines for the rational and practical design of robust ultrasound heat transfer platforms.
-
Key words:
- acoustic wave /
- heat transfer /
- ultrasound /
- convection heat transfer /
- boiling heat transfer
-
圖 1 (a) 超聲波產生的空化效應和聲流效應;(b) 聲場空化強化換熱原理;(c) 聲流強化換熱示意圖[12]
Figure 1. (a) Acoustic cavitation and acoustic streaming effects excited by ultrasound; (b) principles of heat transfer enhancement by acoustic cavitation; (c) schematic diagram showing the acoustic streaming enhancement of convective heat transfer[12]
圖 2 (a) 聲波方向與氣流平行的兩平板間換熱分析[15];(b) 聲波方向與氣流垂直的兩平板間換熱分析[17];(c) 基于空穴的聲波強化換熱數值分析[20]
Figure 2. (a) Heat transfer between two parallel plates with wave propagation along the longitudinal direction[15]; (b) heat transfer between two parallel plates with wave propagation along the spanwise direction[17]; (c) heat transfer enhancement using acoustic waves in a cavity[20]
圖 3 (a) 錐形喇叭超聲振動強化換熱實驗裝置[24];(b) 縱向聲振動聲流換熱實驗裝置[25];(c) 收縮噴嘴(上)和長管噴嘴(下)類型的聲激勵沖擊射流強化換熱裝置[28]
Figure 3. (a) Experimental setup demonstrating conical horn-based ultrasonic vibrations for convective transfer enhancement[24]; (b) experimental setup for the acoustic streaming-induced heat transfer by longitudinal ultrasonic vibration[25]; (c) impinging jet heat transfer with contraction nozzle under acoustic excitation (up) and long tube nozzle (down) types[28]
圖 5 (a) 聲空化強化水平空管對流換熱[35];(b) 喇叭狀超聲發生器強化換熱[41];(c) 聲空化強化振蕩流熱管換熱[42];(d) 高頻聲波強化換熱實驗裝置[45]
Figure 5. (a) Augmentation of convective heat transfer by acoustic cavitation from a horizontal circular tube[35]; (b) enhancement of ultrasonic heat transfer enhancement with a horn-type transducer[41]; (c) heat transfer enhancement of oscillating flow heat pipe by acoustic cavitation[42]; (d) experimental setup of heat transfer enhancement using high-frequency ultrasound[45]
圖 6 (a) 水平銅管聲空化沸騰換熱強化[54];(b) 翅片管超聲波強化池沸騰換熱[64];(c) 電聲耦合強化換熱,c1?c3為介電潤濕和聲激勵條件下汽泡的級聯行為[65];(d) 微重力池沸騰換熱過程中空化汽泡分布(紅圈內是聲壓反節點處空化汽泡區域;紅色箭頭是汽泡向反節點的運動軌跡)[66]
Figure 6. (a) Boiling heat transfer enhancement of heated horizontal copper tube via acoustic cavitation[54]; (b) boiling heat transfer enhancement of a fin tube under ultrasound[64]; (c) integrated electric and acoustic actuation for heat transfer enhancement, c1?c3 are the sequential steps of bubble behavior by dielectrowetting and acoustic excitation[65]; (d) distribution of cavitation bubbles during the microgravity pool boiling heat transfer process (red circles indicate the regions of bubble cavitation at antinodes; red arrow indicates the trajectory of a bubble formed at the heater towards an antinode)[66]
圖 7 (a) 基于微加熱器和溫度傳感器陣列的微室流動沸騰超聲波強化換熱實驗裝置[76];(b) 聲場垂直于流動方向的流動沸騰換熱強化微通道熱沉[77];(c) 聲場平行于流動方向的流動沸騰換熱強化微通道熱沉[78]
Figure 7. (a) Experiment setup in a mini chamber demonstrating the enhancement of boiling heat transfer under ultrasound fields [76]; (b) enhancement of flow boiling heat transfer in a mini-channel heat sink with an acoustic field perpendicular to the flow direction[77]; (c) enhancement of flow boiling heat transfer in a mini-channel heat sink with an acoustic field parallel to the flow direction[78]
www.77susu.com -
參考文獻
[1] Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces. CIESC J, 2016, 67(1): 97魏進家, 張永海. 柱狀微結構表面強化沸騰換熱研究綜述. 化工學報, 2016, 67(1):97 [2] Japar W M A A, Sidik N A C, Mat S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int Commun Heat Mass Transf, 2018, 99: 62 doi: 10.1016/j.icheatmasstransfer.2018.10.005 [3] Binayak D, Jajneswar N, Kumar R S. The role of microchannel geometry selection on heat transfer enhancement in heat sinks: A review. Heat Transf, 2021, 51(2): 1406 [4] Chen Z Z, Chen H Q, Huang L, et al. Research progress on silica nanofluids for convective heat transfer enhancement. Chin J Eng, 2022, 44(4): 812陳真真, 陳洪強, 黃磊, 等. 二氧化硅納米流體強化對流換熱研究進展. 工程科學學報, 2022, 44(4):812 [5] Wei J J, Liu B, Zhang Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity. Chem Ind Eng Prog, 2019, 38(1): 14 doi: 10.16085/j.issn.1000-6613.2018-1133魏進家, 劉斌, 張永海. 常/微重力下微結構表面強化沸騰換熱研究進展. 化工進展, 2019, 38(1):14 doi: 10.16085/j.issn.1000-6613.2018-1133 [6] Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf, 2021, 175: 121332 doi: 10.1016/j.ijheatmasstransfer.2021.121332 [7] Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf, 2017, 88: 74 doi: 10.1016/j.icheatmasstransfer.2017.08.009 [8] Guo Z C, Liu X, Xue J L, et al. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis. Chin J Eng, 2019, 41(9): 1135郭志超, 劉軒, 薛濟來, 等. 超聲對熔鹽電解法制備Al–7Si–Sc合金組織的影響. 工程科學學報, 2019, 41(9):1135 [9] Liu X, Guo Z C, Xue J L, et al. Ultrasonic refining mechanism of ternary phase in Al-Sc based alloys prepared through molten salt electrolysis. Chin J Eng, 2020, 42(11): 1465劉軒, 郭志超, 薛濟來, 等. 電解制備含鈧鋁合金三元相超聲細化機制. 工程科學學報, 2020, 42(11):1465 [10] Chen Z Z, Shen L, Zhao X, et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl Mater Today, 2022, 26: 101356 doi: 10.1016/j.apmt.2021.101356 [11] Yang Y F, Jiang G S, Yu M, et al. Research status and prospect of acoustic streaming theory and its heat and mass transfer. J Vib Shock, 2021, 40(18): 273楊延鋒, 姜根山, 于淼, 等. 聲流理論及其傳熱傳質研究現狀與展望. 振動與沖擊, 2021, 40(18):273 [12] Legay M, Gondrexon N, Le Person S, et al. Enhancement of heat transfer by ultrasound: Review and recent advances. Int J Chem Eng, 2011, 2011: 670108 [13] Sun B Z, Jiang R Q, Huai X L, et al. Development of the research on acoustic cavitation enhancement of heat transfer. J Harbin Eng Univ, 2004, 25(1): 19 doi: 10.3969/j.issn.1006-7043.2004.01.004孫寶芝, 姜任秋, 淮秀蘭, 劉登瀛. 聲空化及其強化傳熱技術研究進展. 哈爾濱工程大學學報, 2004, 25(1):19 doi: 10.3969/j.issn.1006-7043.2004.01.004 [14] Zhang D W, Jiang E H, Zhou J J, et al. Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration. Int Commun Heat Mass Transf, 2020, 115: 104523 doi: 10.1016/j.icheatmasstransfer.2020.104523 [15] Vainshtein P, Fichman M, Gutfinger C. Acoustic enhancement of heat transfer between two parallel plates. Int J Heat Mass Transf, 1995, 38(10): 1893 doi: 10.1016/0017-9310(94)00299-B [16] Liu F, Li X M. Influence of acoustic streaming on heat transfer between two parallel plates. Sci Technol Eng, 2016, 16(24): 54 doi: 10.3969/j.issn.1671-1815.2016.24.010劉峰, 李學敏. 二維平板內駐波聲流對傳熱的影響. 科學技術與工程, 2016, 16(24):54 doi: 10.3969/j.issn.1671-1815.2016.24.010 [17] Rahbari I, Cukurel B, Paniagua G. Acoustic pulsation for heat transfer abatement in supersonic channel flow. Phys Fluids, 2021, 33(3): 035104 doi: 10.1063/5.0037078 [18] Aktas M K, Farouk B, Lin Y Q. Heat transfer enhancement by acoustic streaming in an enclosure. J Heat Transf, 2005, 127(12): 1313 doi: 10.1115/1.2098858 [19] Yang Y F, Jiang G S, Yu M. Numerical simulation of convective heat transfer enhanced by acoustic streaming around heat exchanger tubes. J Chin Soc Power Eng, 2021, 41(8): 650楊延鋒, 姜根山, 于淼. 換熱管周圍聲流強化對流傳熱的數值模擬. 動力工程學報, 2021, 41(8):650 [20] Rulik S, Wróblewski W. A numerical study of the heat transfer intensification using high amplitude acoustic waves. Arch Acoust, 2018, 43(1): 31 [21] Rulik S, Wróblewski W, Nowak G, et al. Heat transfer intensification using acoustic waves in a cavity. Energy, 2015, 87: 21 doi: 10.1016/j.energy.2015.04.088 [22] Lemlich R, Hwu C. The effect of acoustic vibration on forced convective heat transfer. Aiche J, 1961, 7: 102 doi: 10.1002/aic.690070124 [23] Mozurkewich G. Heat transfer from a cylinder in an acoustic standing wave. J Acoust Soc Am, 1995, 98(4): 2209 doi: 10.1121/1.413335 [24] Hyun S, Lee D R, Loh B G. Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations. Int J Heat Mass Transf, 2005, 48(3-4): 703 doi: 10.1016/j.ijheatmasstransfer.2004.07.048 [25] Loh B G, Lee D R. Heat transfer characteristics of acoustic streaming by longitudinal ultrasonic vibration. J Thermophys Heat Transf, 2004, 18(1): 94 doi: 10.2514/1.9156 [26] Loh B G, Hyun S, Ro P I, et al. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer. J Acoust Soc Am, 2002, 111(2): 875 doi: 10.1121/1.1433811 [27] Lee D R, Loh B G. Smart cooling technology utilizing acoustic streaming. IEEE Trans Compon Packag Technol, 2007, 30(4): 691 doi: 10.1109/TCAPT.2007.901756 [28] Roux S, Fénot M, Lalizel G, et al. Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf, 2011, 54(15-16): 3277 doi: 10.1016/j.ijheatmasstransfer.2011.03.059 [29] Gau C, Sheu W Y, Shen C H. Impingement cooling flow and heat transfer under acoustic excitations. J Heat Transf, 1997, 119(4): 810 doi: 10.1115/1.2824187 [30] Komarov S, Hirasawa M. Enhancement of gas phase heat transfer by acoustic field application. Ultrasonics, 2003, 41(4): 289 doi: 10.1016/S0041-624X(02)00454-7 [31] Cai J, Huai X L, Yan R S, et al. Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure. Appl Therm Eng, 2009, 29(10): 1973 doi: 10.1016/j.applthermaleng.2008.09.015 [32] Kumar V, Azharudeen M, Pothuri C, et al. Heat transfer mechanism driven by acoustic body force under acoustic fields. Phys Rev Fluids, 2021, 6(7): 073501 doi: 10.1103/PhysRevFluids.6.073501 [33] Li S N, Zhang H N, Cheng J P, et al. A numerical study on heat transfer performance in a straight microchannel heat sink with standing surface acoustic waves. Heat Transf Eng, 2022, 43(3-5): 371 doi: 10.1080/01457632.2021.1874670 [34] Das P K, Snider A D, Bhethanabotla V R. Acoustothermal heating in surface acoustic wave driven microchannel flow. Phys Fluids, 2019, 31(10): 106106 doi: 10.1063/1.5121307 [35] Cai J, Huai X L, Liang S Q, et al. Augmentation of natural convective heat transfer by acoustic cavitation. Front Energy Power Eng China, 2010, 4(3): 313 doi: 10.1007/s11708-009-0064-3 [36] Fand R M. The influence of acoustic vibrations on heat transfer by natural convection from a horizontal cylinder to water. J Heat Transf, 1965, 87(2): 309 doi: 10.1115/1.3689095 [37] Richardson P D. Heat transfer from a circular cylinder by acoustic streaming. J Fluid Mech, 1967, 30(2): 337 doi: 10.1017/S0022112067001466 [38] Zhou D W, Liu D Y. Experimental study on enhancement of single-phase convective heat transfer by acoustic cavitation field. Prog Nat Sci, 2002, 12(5): 553 doi: 10.3321/j.issn:1002-008X.2002.05.021周定偉, 劉登瀛. 聲空化場強化單相對流傳熱的實驗研究. 自然科學進展, 2002, 12(5):553 doi: 10.3321/j.issn:1002-008X.2002.05.021 [39] Zhou D W, Liu D Y, Hu X G. Experimental study of single-phase convection heat transfer in acoustic cavitation field. J Eng Thermophys, 2002, 23(1): 82 doi: 10.3321/j.issn:0253-231X.2002.01.023周定偉, 劉登瀛, 胡學功. 聲空化場下單相對流傳熱的實驗研究. 工程熱物理學報, 2002, 23(1):82 doi: 10.3321/j.issn:0253-231X.2002.01.023 [40] Dhanalakshmi N P, Nagarajan R, Sivagaminathan N, et al. Acoustic enhancement of heat transfer in furnace tubes. Chem Eng Process Process Intensif, 2012, 59: 36 doi: 10.1016/j.cep.2012.05.001 [41] Nomura S, Yamamoto A, Murakami K. Ultrasonic heat transfer enhancement using a horn-type transducer. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap, 2002, 41(5 B): 3217 [42] Xian H, Liu D, Shang F, et al. Experimental study on the heat transfer enhancement of oscillating-flow heat pipe by acoustic cavitation. Dry Technol, 2009, 27(4): 542 doi: 10.1080/07373930802715666 [43] Xian H Z, Liu D Y, Shang F M, et al. Experimental investigation on heat transfer enhancement of oscillating-flow heat pipe by acoustic cavitation. J Eng Thermophys, 2007, 28(3): 508 doi: 10.3321/j.issn:0253-231X.2007.03.047冼海珍, 劉登瀛, 商福民, 等. 聲空化強化振蕩流熱管傳熱實驗研究. 工程熱物理學報, 2007, 28(3):508 doi: 10.3321/j.issn:0253-231X.2007.03.047 [44] Chen C B, Xian H Z, Liu D Y, et al. The heat transfer characteristics of oscillating-flow heat pipe by external acoustic cavitation field. J Eng Thermophys, 2009, 30(5): 831 doi: 10.3321/j.issn:0253-231X.2009.05.030陳傳寶, 冼海珍, 劉登瀛, 等. 聲空化外場對振蕩流熱管傳熱性能的影響. 工程熱物理學報, 2009, 30(5):831 doi: 10.3321/j.issn:0253-231X.2009.05.030 [45] Monnot A, Boldo P, Gondrexon N, et al. Enhancement of cooling rate by means of high frequency ultrasound. Heat Transf Eng, 2007, 28(1): 3 doi: 10.1080/01457630600985485 [46] Bulliard-Sauret O, Ferrouillat S, Vignal L, et al. Heat transfer enhancement using 2 MHz ultrasound. Ultrason Sonochemistry, 2017, 39: 262 doi: 10.1016/j.ultsonch.2017.04.021 [47] Rahimi M, Dehbani M, Abolhasani M. Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer: Effects of transducer position and wave interference. Int Commun Heat Mass Transf, 2012, 39(5): 720 doi: 10.1016/j.icheatmasstransfer.2012.03.013 [48] Stewart E, Stewart P, Watson A. Thermo-acoustic oscillations in forced convection heat transfer to supercritical pressure water. Int J Heat Mass Transf, 1973, 16(2): 257 doi: 10.1016/0017-9310(73)90055-0 [49] Tajik B, Abbassi A, Saffar-Avval M, et al. Heat transfer enhancement by acoustic streaming in a closed cylindrical enclosure filled with water. Int J Heat Mass Transf, 2013, 60: 230 doi: 10.1016/j.ijheatmasstransfer.2012.12.066 [50] Pan H, Bi Q C, Liu Z H, et al. Experimental investigation on thermo-acoustic instability and heat transfer of supercritical endothermic hydrocarbon fuel in a mini tube. Exp Therm Fluid Sci, 2018, 97: 109 doi: 10.1016/j.expthermflusci.2018.03.017 [51] Wong S W, Chon W Y. Effects of ultrasonic vibrations on heat transfer to liquids by natural convection and by boiling. AIChE J, 1969, 15(2): 281 doi: 10.1002/aic.690150229 [52] Li C D, Zhang W, Liu G L, et al. Effect of ultrasound on pool boiling heat transfer. Energy Conserv Technol, 2016, 34(6): 527 doi: 10.3969/j.issn.1002-6339.2016.06.010李長達, 張偉, 劉廣林, 等. 超聲波對池沸騰換熱的影響. 節能技術, 2016, 34(6):527 doi: 10.3969/j.issn.1002-6339.2016.06.010 [53] Lin W X, Xiao J, Su G C, et al. Ultrasound-assisted enhancement of heat transfer in immersed coil heat exchangers: Effects of acoustic intensity and ambient fluid properties. Int Commun Heat Mass Transf, 2021, 129: 105735 doi: 10.1016/j.icheatmasstransfer.2021.105735 [54] Zhou D W. Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int J Heat Mass Transf, 2004, 47(14-16): 3109 doi: 10.1016/j.ijheatmasstransfer.2004.02.018 [55] Zhou D W, Liu D Y, Ma C F. Experimental study of the effect of nanometer granule on boiling heat transfer in an acoustic cavitation field. J Eng Therm Energy Power, 2001, 16(6): 594 doi: 10.3969/j.issn.1001-2060.2001.06.006周定偉, 劉登瀛, 馬重芳. 聲空化場下納米顆粒對沸騰傳熱影響的實驗研究. 熱能動力工程, 2001, 16(6):594 doi: 10.3969/j.issn.1001-2060.2001.06.006 [56] Zhou D W, Liu D Y. Heat transfer characteristics of nanofluids in an acoustic cavitation field. Heat Transf Eng, 2004, 25(6): 54 doi: 10.1080/01457630490486274 [57] Zhou D W, Liu D Y, Hu X G, et al. Experimental study on boiling heat transfer from horizontal circular tube in an acoustic cavitation field. J Eng Thermophys, 2002, 23(Sup 1): 177周定偉, 劉登瀛, 胡學功, 等. 聲空化場下水平圓管沸騰換熱的實驗研究. 工程熱物理學報, 2002, 23(S1): 177 [58] Zhou D W, Liu D Y. Boiling heat transfer in an acoustic cavitation field. Chin J Chem Eng, 2002, 10(5): 625 [59] Zhou D W, Liu D Y, Hu X G, et al. Experimental research on the heat transfer in a horizontal circular tube immersed in a porous medium under the action of an acoustic cavitation field. J Eng Therm Energy Power, 2002, 17(6): 580 doi: 10.3969/j.issn.1001-2060.2002.06.010周定偉, 劉登瀛, 胡學功, 等. 聲空化場下浸沒在多孔介質中水平圓管傳熱的實驗研究. 熱能動力工程, 2002, 17(6):580 doi: 10.3969/j.issn.1001-2060.2002.06.010 [60] Zhou D W, Liu D Y, Hu X G, et al. Effect of acoustic cavitation on boiling heat transfer. Exp Therm Fluid Sci, 2002, 26(8): 931 doi: 10.1016/S0894-1777(02)00201-7 [61] Zhou D W. Mechanism of boiling heat transfer intensified by acoustic cavitation field. J Chem Ind Eng (China) , 2002, 53(5): 538 doi: 10.3321/j.issn:0438-1157.2002.05.021周定偉. 聲空化場強化沸騰傳熱機理. 化工學報, 2002, 53(5):538 doi: 10.3321/j.issn:0438-1157.2002.05.021 [62] Sun B Z, Jiang R Q, Huai X L, et al. Experimental observation and analysis of enhancing boiling heat transfer with acoustic cavitation. Chin J Mech Eng, 2009, 45(1): 73 doi: 10.3901/JME.2009.01.073孫寶芝, 姜任秋, 淮秀蘭, 等. 聲空化強化沸騰換熱的試驗觀察與分析. 機械工程學報, 2009, 45(1):73 doi: 10.3901/JME.2009.01.073 [63] Baffigi F, Bartoli C. Influence of the ultrasounds on the heat transfer in single phase free convection and in saturated pool boiling. Exp Therm Fluid Sci, 2012, 36: 12 doi: 10.1016/j.expthermflusci.2011.07.012 [64] Wan Z P, Duan J C, Wang X W, et al. Saturated boiling heat transfer under ultrasound. Int Commun Heat Mass Transf, 2020, 115: 104511 doi: 10.1016/j.icheatmasstransfer.2020.104511 [65] Hyun Y, Lee K Y, Jang D, et al. Bubble removal by electric and acoustic actuation for heat transfer enhancement. AIP Adv, 2021, 11(8): 085030 doi: 10.1063/5.0042503 [66] Quintana-Buil G, González-Cinca R. Acoustic effects on heat transfer on the ground and in microgravity conditions. Int J Heat Mass Transf, 2021, 178: 121627 doi: 10.1016/j.ijheatmasstransfer.2021.121627 [67] Zhang J, Lü Y J, Zhang X M, et al. Effect of surface roughness on pool boiling heat transfer in an ultrasonic field. J Eng Thermophys, 2010, 31(9): 1524張佳, 呂友軍, 張西民, 等. 超聲作用下不同粗糙度表面沸騰換熱實驗研究. 工程熱物理學報, 2010, 31(9):1524 [68] Zhang J, Bai B F. Pool boiling under ultrasonic wave. J Eng Thermophys, 2011, 32(6): 961張佳, 白博峰. 超聲波對池沸騰換熱影響. 工程熱物理學報, 2011, 32(6):961 [69] Boziuk T R, Smith M K, Glezer A. Enhanced boiling heat transfer on plain and featured surfaces using acoustic actuation. Int J Heat Mass Transf, 2017, 108: 181 doi: 10.1016/j.ijheatmasstransfer.2016.11.071 [70] Douglas Z, Boziuk T R, Smith M K, et al. Acoustically enhanced boiling heat transfer. Phys Fluids, 2012, 24(5): 052105 doi: 10.1063/1.4721669 [71] Li B, Han X D, Wan Z P, et al. Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in sub-cooled boiling. Appl Therm Eng, 2016, 92: 93 doi: 10.1016/j.applthermaleng.2015.09.069 [72] Sitter J S, Snyder T J, Chung J N, et al. Terrestrial and microgravity pool boiling heat transfer from a wire in an acoustic field. Int J Heat Mass Transf, 1998, 41(14): 2143 doi: 10.1016/S0017-9310(97)00344-X [73] Moehrle R E, Chung J N. Pool boiling heat transfer driven by an acoustic standing wave in terrestrial gravity and microgravity. Int J Heat Mass Transf, 2016, 93: 322 doi: 10.1016/j.ijheatmasstransfer.2015.09.030 [74] Fogg D W, Goodson K E. Bubble-induced water hammer and cavitation in microchannel flow boiling. J Heat Transf, 2009, 131(12): 121006 doi: 10.1115/1.3216381 [75] Shariff Y M. Acoustics vibrations to enhance flow boiling in micro channels. Int J Therm Environ Eng (IJTEE) , 2010, 2(1): 19 doi: 10.5383/ijtee.02.01.003 [76] Qu X P, Qiu H H. Thermal bubble dynamics under the effects of an acoustic field. Heat Transf Eng, 2011, 32(7-8): 636 doi: 10.1080/01457632.2010.509757 [77] Zhou J Y, Luo X P, Li C Z, et al. Flow boiling heat transfer enhancement under ultrasound field in minichannel heat sinks. Ultrason Sonochemistry, 2021, 78: 105737 doi: 10.1016/j.ultsonch.2021.105737 [78] Yu F, Luo X P, He B L, et al. Experimental investigation of flow boiling heat transfer enhancement under ultrasound fields in a minichannel heat sink. Ultrason Sonochem, 2021, 70: 105342 doi: 10.1016/j.ultsonch.2020.105342 -