<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于深度學習的礦石圖像處理研究綜述

王偉 李擎 張德政 栗輝 王昊

王偉, 李擎, 張德政, 栗輝, 王昊. 基于深度學習的礦石圖像處理研究綜述[J]. 工程科學學報, 2023, 45(4): 621-631. doi: 10.13374/j.issn2095-9389.2022.01.23.001
引用本文: 王偉, 李擎, 張德政, 栗輝, 王昊. 基于深度學習的礦石圖像處理研究綜述[J]. 工程科學學報, 2023, 45(4): 621-631. doi: 10.13374/j.issn2095-9389.2022.01.23.001
WANG Wei, LI Qing, ZHANG De-zheng, LI Hui, WANG Hao. A survey of ore image processing based on deep learning[J]. Chinese Journal of Engineering, 2023, 45(4): 621-631. doi: 10.13374/j.issn2095-9389.2022.01.23.001
Citation: WANG Wei, LI Qing, ZHANG De-zheng, LI Hui, WANG Hao. A survey of ore image processing based on deep learning[J]. Chinese Journal of Engineering, 2023, 45(4): 621-631. doi: 10.13374/j.issn2095-9389.2022.01.23.001

基于深度學習的礦石圖像處理研究綜述

doi: 10.13374/j.issn2095-9389.2022.01.23.001
基金項目: 國家自然科學基金資助項目(62173029);北京科技大學中央高校基本科研業務費資助項目(FRF-IC-20-03);河北省高等學校科學技術研究項目(QN2019184)
詳細信息
    通訊作者:

    E-mail: liqing@ies.ustb.edu.cn

  • 中圖分類號: TP183

A survey of ore image processing based on deep learning

More Information
  • 摘要: 聚焦于礦石勘探和將礦石破碎篩分后的皮帶運輸兩個環節,系統總結了深度學習技術在礦石圖像處理中的主要應用,包括礦石分類、粒度分析和異物識別等任務,并分門別類地梳理了完成以上三大任務的常用算法及其優缺點。其中,礦石分類在地質勘探中起著重要作用;粒度分析能為破碎機和傳送皮帶的控制提供參考依據,還能識別出給礦皮帶上過大尺寸的礦石,防止處于給礦皮帶和受礦皮帶之間的轉運緩沖倉內發生堵料事故;異物識別能將皮帶上混在礦石中的有害物品檢測出來。

     

  • 圖  1  礦石生產流程與礦石圖像處理任務. (a) 生產流程; (b) 礦石圖像處理任務分類

    Figure  1.  Ore production process and the ore image processing task: (a) production process; (b) task classification

    圖  2  深度學習技術分類. (a) 圖像分類; (b) 目標檢測; (c) 語義分割

    Figure  2.  Deep learning technology classification: (a) image classification; (b) object detection; (c) semantic segmentation

    圖  3  不同類型鐵礦石示例. (a) 赤鐵礦; (b) 假象礦; (c) 褐鐵礦; (d) 透閃礦

    Figure  3.  Examples of different types of iron ore: (a) hematite; (b) false mineral; (c) limonite; (d) tremolite

    圖  4  多個體礦石分類技術. (a) 目標檢測; (b) 語義分割[50]

    Figure  4.  Multi-object ore classification technology: (a) object detection; (b) semantic segmentation

    圖  5  皮帶礦石圖像[57]

    Figure  5.  Ore image on a conveyor belt[57]

    圖  6  礦石圖像及其標簽. (a)原始圖像[57]; (b) 礦石邊緣標簽; (c) 礦石主體標簽

    Figure  6.  Ore image and label: (a) original image[57]; (b) ore edge label; (c) ore mask label

    圖  7  邊緣感知網絡結構圖[57]

    Figure  7.  Boundary-aware network structure diagram[57]

    圖  8  礦石圖像分割結果. (a) 原圖; (b) 標簽; (c) U-Net分割結果; (d) 文獻[57]分割結果

    Figure  8.  Ore image segmentation results: (a) original image; (b) label; (c) segmentation result by U-Net; (d) segmentation result by reference [57]

    圖  9  基于不同損失函數的U-Net礦石圖像分割結果. (a) 礦石原圖; (b) 二值交叉熵損失函數; (c) 焦點損失函數

    Figure  9.  U-Net ore image segmentation result based on different losses: (a) original ore image; (b) BCE; (c) focal loss

    圖  10  基于Faster R-CNN的皮帶大塊礦石檢測. (a) 原圖; (b) 標簽; (c) 檢測結果

    Figure  10.  Large block ore detection based on Faster R-CNN: (a) original image; (b) label; (c) detection result

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278 doi: 10.1109/5.726791
    [2] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis, 2015, 115(3): 211 doi: 10.1007/s11263-015-0816-y
    [3] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
    [4] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition // Proceedings of the International Conference on Learning Representations. San Diego, 2015.
    [5] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 1
    [6] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
    [7] Hu J, Shen L, Sun G. Squeeze-and-Excitation networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
    [8] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J/OL]. arXiv Online (2017-4-17) [2022-01-23].https://arxiv.org/abs/1704.04861
    [9] Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6848
    [10] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Proceedings of the 31st International Conference on Advances in Neural Information Processing Systems. Long Beach, 2017: 6000
    [11] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale // Proceedings of the International Conference on Learning Representations. Addis Ababa, 2021
    [12] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Tntell, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
    [13] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 779
    [14] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, 2017: 7263
    [15] Ge Z, Liu S T, Wang F, et al. YOLOX: Exceeding YOLO series in 2021 [J/OL]. arXiv Online (2021-7-18) [2022-01-23].https://arxiv.org/abs/2107.08430
    [16] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 21
    [17] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points [J/OL]. arXiv Online (2019-4-16) [2022-01-23].https://arxiv.org/abs/1904.07850
    [18] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers // Proceedings of the European Conference on Computer Vision. Glasgow, 2020: 213
    [19] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 3431
    [20] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation // Proceedings of the International Conference on Medical Image Computing & Computer-assisted Intervention. Munich, 2015: 234
    [21] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 834 doi: 10.1109/TPAMI.2017.2699184
    [22] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, 2017: 6230
    [23] Milletari F, Navab N, Ahmadi S A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation // Proceedings of the Fourth International Conference on 3D Vision. Palo Alto, 2016: 565
    [24] Huang Z L, Wang X G, Huang L C, et al. CCNet: Criss-cross attention for semantic segmentation // Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 603
    [25] Zheng S X, Lu J C, Zhao H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nashville, 2021: 6877
    [26] Su L L, Cao X G, Ma H W, et al. Research on coal gangue identification by using convolutional neural network // Proceedings of the IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Xi’an, 2018: 810
    [27] Pu Y Y, Apel D B, Szmigiel A, et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning. Energies, 2019, 12(9): 1
    [28] Wang L G, Chen S J, Jia M T, et al. Beneficiation method of wolframite image recognition based on deep learning. Chin J Nonferr Met, 2020, 30(5): 1192 doi: 10.11817/j.ysxb.1004.0609.2020-35801

    王李管, 陳斯佳, 賈明滔, 等. 基于深度學習的黑鎢礦圖像識別選礦方法. 中國有色金屬學報, 2020, 30(5):1192 doi: 10.11817/j.ysxb.1004.0609.2020-35801
    [29] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 2818
    [30] Zhang Y, Li M C, Han S. Automatic identification and classification in lithology based on deep learning in rock images. Acta Petrol Sin, 2018, 34(2): 333

    張野, 李明超, 韓帥. 基于巖石圖像深度學習的巖性自動識別與分類方法. 巖石學報, 2018, 34(2):333
    [31] Baraboshkin E E, Ismailova L S, Orlov D M, et al. Deep convolutions for in-depth automated rock typing. Comput Geosci, 2020, 135: 104330 doi: 10.1016/j.cageo.2019.104330
    [32] Bai L, Yao Y, Li S T, et al. Mineral composition analysis of rock image based on deep learning feature extraction. China Min Mag, 2018, 27(7): 178 doi: 10.12075/j.issn.1004-4051.2018.07.038

    白林, 姚鈺, 李雙濤, 等. 基于深度學習特征提取的巖石圖像礦物成分分析. 中國礦業, 2018, 27(7):178 doi: 10.12075/j.issn.1004-4051.2018.07.038
    [33] Lloyd S. Least Squares quantization in PCM. IEEE Trans Inf Theory, 1982, 28(2): 129 doi: 10.1109/TIT.1982.1056489
    [34] Li M C, Liu C Z, Zhang Y, et al. A deep learning and intelligent recognition method of image data for rock mineral and its implementation. Geotectonica Metallog, 2020, 44(2): 203 doi: 10.16539/j.ddgzyckx.2020.02.004

    李明超, 劉承照, 張野, 等. 耦合顏色和紋理特征的礦物圖像數據深度學習模型與智能識別方法. 大地構造與成礦學, 2020, 44(2):203 doi: 10.16539/j.ddgzyckx.2020.02.004
    [35] Liu C Z, Li M C, Zhang Y, et al. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm. Minerals, 2019, 9(9): 516 doi: 10.3390/min9090516
    [36] Zeng X, Xiao Y C, Ji X H, et al. Mineral identification based on deep learning that combines image and Mohs hardness. Minerals, 2021, 11(5): 506 doi: 10.3390/min11050506
    [37] Tan M, Le Q. EfficientNet: Rethinking model scaling for convolutional neural networks // Proceedings of the International Conference on Machine Learning. Long Beach, 2019: 6105
    [38] Yun S, Han D, Chun S, et al. CutMix: Regularization strategy to train strong classifiers with localizable features // Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 6022
    [39] Liang Y, Cui Q, Luo X, et al. Research on classification of fine-grained rock images based on deep learning. Comput Intell Neurosci, 2021, 2021: 5779740
    [40] Iglesias J C A, Santos R B M, Paciornik S. Deep learning discrimination of quartz and resin in optical microscopy images of minerals. Miner Eng, 2019, 138: 79 doi: 10.1016/j.mineng.2019.04.032
    [41] Guo Y J, Zhou Z, Lin H X, et al. The mineral intelligence identification method based on deep learning algorithms. Earth Sci Front, 2020, 27(5): 39 doi: 10.13745/j.esf.sf.2020.5.45

    郭艷軍, 周哲, 林賀洵, 等. 基于深度學習的智能礦物識別方法研究. 地學前緣, 2020, 27(5):39 doi: 10.13745/j.esf.sf.2020.5.45
    [42] Ran X J, Xue L F, Zhang Y Y, et al. Rock classification from field image patches analyzed using a deep convolutional neural network. Mathematics, 2019, 7(8): 755 doi: 10.3390/math7080755
    [43] Lima R P D, Bonar A, Coronado D D, et al. Deep convolutional neural networks as a geological image classification tool. Sediment Rec, 2019, 17(2): 4 doi: 10.2110/sedred.2019.2.4
    [44] Xiao D, Le B T, Ha T T L. Iron ore identification method using reflectance spectrometer and a deep neural network framework. Spectrochimica Acta A Mol Biomol Spectrosc, 2021, 248(10): 119168
    [45] Han S, Li H, Li M C, et al. Measuring rock surface strength based on spectrograms with deep convolutional networks. Comput Geosci, 2019, 133: 104312 doi: 10.1016/j.cageo.2019.104312
    [46] Liu X B, Wang H Y, Jing H D, et al. Research on intelligent identification of rock types based on Faster R-CNN method. IEEE Access, 2020, 8: 21804 doi: 10.1109/ACCESS.2020.2968515
    [47] Xu Z H, Ma W, Lin P, et al. Deep learning of rock images for intelligent lithology identification. Comput Geosci, 2021, 154: 104799 doi: 10.1016/j.cageo.2021.104799
    [48] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J/OL]. arXiv Online (2020-4-23) [2022-01-23].https://arxiv.org/abs/2004.10934
    [49] Deng T, Yu Y. Research on ore identification and separation based on improved PSO-Faster R-CNN algorithm. Min Res Dev, 2021, 41(2): 178

    鄧田, 余翼. 基于PSO-Faster R-CNN改進算法的礦石識別分類研究. 礦業研究與開發, 2021, 41(2):178
    [50] Yang H, Huang C, Wang L, et al. An improved encoder-decoder network for ore image segmentation. IEEE Sens J, 2021, 21(10): 11469 doi: 10.1109/JSEN.2020.3016458
    [51] Luo X Y, Liu S, Tang W C, et al. Research on identification and location of blocked ore at ore bin inlet based on Mask R-CNN. Nonferrous Met Sci Eng, 2022, 13(1): 101

    羅小燕, 劉順, 湯文聰, 等. 基于Mask R-CNN的礦倉入料口堵塞礦石識別定位研究. 有色金屬科學與工程, 2022, 13(1):101
    [52] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN // Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 2980
    [53] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 1979, 9(1): 62 doi: 10.1109/TSMC.1979.4310076
    [54] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986(6): 679
    [55] Zhang W, Jiang D L. The marker-based watershed segmentation algorithm of ore image // Proceedings of the IEEE International Conference on Communication Software and Networks. Xi’an, 2011: 472
    [56] Xiao D, Liu X W, Le B T, et al. An ore image segmentation method based on RDU-Net model. Sensors, 2020, 20(17): 4979 doi: 10.3390/s20174979
    [57] Wang W, Li Q, Xiao C Y, et al. An improved boundary-aware U-Net for ore image semantic segmentation. Sensors, 2021, 21(8): 2615 doi: 10.3390/s21082615
    [58] Xie S N, Tu Z W. Holistically-nested edge detection // Proceeding of the IEEE International Conference on Computer Vision. Santiago, 2015: 1395
    [59] Yuan L, Duan Y Y. A method of ore image segmentation based on deep learning // Proceedings of the Intelligent Computing Methodologies. Wu’han, 2018: 508
    [60] Gu Q H, Wei F W, Guo M L, et al. Segmentation method of broken ore image based on improved HED network model. Laser Optoelectron Prog, 2022, 59(2): 262

    顧清華, 危發文, 郭夢利, 等. 基于改進HED網絡模型的破碎礦石圖像分割方法. 激光與光電子學進展, 2022, 59(2):262
    [61] Xu J C, Jin G Q, Zhu T Y, et al. Segmentation of rock images based on U-Net. Ind Control Comput, 2018, 31(4): 98 doi: 10.3969/j.issn.1001-182X.2018.04.040

    徐江川, 金國強, 朱天奕, 等. 基于深度學習U-Net模型的石塊圖像分割算法. 工業控制計算機, 2018, 31(4):98 doi: 10.3969/j.issn.1001-182X.2018.04.040
    [62] Ye F Q, Jiang Z H, Zhou H, et al. Blast furnace material image segmentation based on multi-layer feature fusion U-Net // Proceedings of the 2020 China Automation Congress. Shanghai, 2020: 1

    葉飛強, 蔣朝輝, 周昊, 等. 基于多層特征融合U-Net高爐爐料礦石圖像分割 // 2020中國自動化大會. 上海, 2020: 1
    [63] Song W, Zheng N, Liu X C, et al. An improved U-Net convolutional networks for seabed mineral image segmentation. IEEE Access, 2019, 7: 82744 doi: 10.1109/ACCESS.2019.2923753
    [64] Dai J F, Qi H Z, Xiong Y W, et al. Deformable convolutional networks // Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 764
    [65] Liu X B, Zhang Y W. Ore image segmentation method of conveyor belt based on U-Net and Res_UNet models. J Northeast Univ, 2019, 40(11): 1623

    柳小波, 張育維. 基于U-Net和Res_UNet模型的傳送帶礦石圖像分割方法. 東北大學學報, 2019, 40(11):1623
    [66] Liu X B, Zhang Y W, Jing H D, et al. Ore image segmentation method using U-Net and Res_UNet convolutional networks. RSC Adv, 2020, 10(16): 9396 doi: 10.1039/C9RA05877J
    [67] Chen H, Qi X J, Yu L Q, et al. DCAN: deep contour-aware networks for accurate gland segmentation // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 2487
    [68] Shen H C, Wang R X, Zhang J G, et al. Boundary-aware fully convolutional network for brain tumor segmentation // Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Quebec City, 2017: 433
    [69] Oda H, Roth H R, Chiba K, et al. BESNet: Boundary-enhanced segmentation of cells in histopathological images // Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada, 2018: 228
    [70] Li X T, Li X, Zhang L, et al. Improving semantic segmentation via decoupled body and edge supervision // Proceedings of the European Conference on Computer Vision. Glasgow, 2020: 435
    [71] Cheng T H, Wang X G, Huang L C, et al. Boundary-preserving Mask R-CNN // Proceedings of the European Conference on Computer Vision. Glasgow, 2020: 660
    [72] Yu C Q, Wang J B, Peng C, et al. Learning a discriminative feature network for semantic segmentation // Proceedings of the Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1857
    [73] Xue Z F, Chen L, Liu Z T, et al. Rock segmentation visual system for assisting driving in TBM construction. Mach Vis Appl, 2021, 32: 77 doi: 10.1007/s00138-021-01203-8
    [74] Li H, Pan C W, Chen Z Y, et al. Ore image segmentation method based on U-Net and watershed. Comput Mater Continua, 2020, 65(1): 563 doi: 10.32604/cmc.2020.09806
    [75] Suprunenko V V. Ore particles segmentation using deep learning methods. J Phys:Conf Ser, 2020, 1679(4): 042089 doi: 10.1088/1742-6596/1679/4/042089
    [76] Wang Z, Zheng X, Li D Y, et al. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions. Comput Ind, 2021, 132: 103506 doi: 10.1016/j.compind.2021.103506
    [77] Duan J X, Liu X Y, Wu X, et al. Detection and segmentation of iron ore green pellets in images using lightweight U-Net deep learning network. Neural Comput Applic, 2020, 32(10): 5775 doi: 10.1007/s00521-019-04045-8
    [78] Duan J X, Liu X Y. Online monitoring of green pellet size distribution in haze-degraded images based on VGG16-LU-Net and haze judgment. IEEE Trans Instrum Meas, 2021, 70: 1
    [79] Hu J, Wang W, Liu T H, et al. An improved segmentation algorithm of broken ore image. Internet Things Technol, 2021, 11(11): 89 doi: 10.16667/j.issn.2095-1302.2021.11.026

    胡健, 王偉, 劉太和, 等. 一種改進的破碎口礦石圖像分割算法. 物聯網技術, 2021, 11(11):89 doi: 10.16667/j.issn.2095-1302.2021.11.026
    [80] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2): 318 doi: 10.1109/TPAMI.2018.2858826
    [81] Liu Y, Zhang Z L, Liu X, et al. Efficient image segmentation based on deep learning for mineral image classification. Adv Powder Technol, 2021, 32(10): 3885 doi: 10.1016/j.apt.2021.08.038
    [82] Zhang Z L. Particle overlapping error correction for coal size distribution estimation by image analysis. Int J Miner Process, 2016, 155: 136 doi: 10.1016/j.minpro.2016.08.016
    [83] Zhang Z L, Hu Q, Zhang Z W, et al. Effect and correction of segregation error in coal size distribution estimation by image analysis on a conveyor belt. J Phys:Conf Ser, 2019, 1324(1): 012032 doi: 10.1088/1742-6596/1324/1/012032
    [84] Olivier L E, Maritz M G, Craig I K. Estimating ore particle size distribution using a deep convolutional neural network. IFAC-PapersOnLine, 2020, 53(2): 12038 doi: 10.1016/j.ifacol.2020.12.740
    [85] Olivier L E, Maritz M G, Craig I K. Deep convolutional neural network for mill feed size characterization. IFAC-PapersOnLine, 2019, 52(14): 105 doi: 10.1016/j.ifacol.2019.09.172
    [86] Du J Y, Hao L, Wang Y Y, et al. A detection method for large blocks in underground coal transportation. Ind Mine Autom, 2020, 46(5): 63 doi: 10.13272/j.issn.1671-251x.2019090067

    杜京義, 郝樂, 王悅陽, 等. 一種煤礦井下輸煤大塊物檢測方法. 工礦自動化, 2020, 46(5):63 doi: 10.13272/j.issn.1671-251x.2019090067
    [87] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J/OL]. arXiv Online (2018-4-8) [2022-01-23].https://arxiv.org/abs/1804.02767
    [88] Bo J W, Zhang C T, Fan C L, et al. Ore conveyor belt sundries detection based on improved YOLOv3. Comput Eng Appl, 2021, 57(21): 248 doi: 10.3778/j.issn.1002-8331.2105-0025

    薄景文, 張春堂, 樊春玲, 等. 改進YOLOv3的礦石輸送帶雜物檢測方法. 計算機工程與應用, 2021, 57(21):248 doi: 10.3778/j.issn.1002-8331.2105-0025
    [89] Sandler M, Howard A, Zhu M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 4510
    [90] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module // Proceedings of the European Conference on Computer Vision. Munich, 2018: 3
    [91] Hu J H, Gao Y, Zhang H J, et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning. Ind Mine Autom, 2021, 47(6): 57 doi: 10.13272/j.issn.1671-251x.2021020041

    胡璟皓, 高妍, 張紅娟, 等. 基于深度學習的帶式輸送機非煤異物識別方法. 工礦自動化, 2021, 47(6):57 doi: 10.13272/j.issn.1671-251x.2021020041
    [92] Ren Z L, Zhu Y C. Research on foreign objects recognition of coal mine belt transportation with improved CenterNet algorithm. Control Eng China,https://doi.org/10.14107/j.cnki.kzgc.20200792

    任志玲, 朱彥存. 改進CenterNet算法的煤礦皮帶運輸異物識別研究. 控制工程,https://doi.org/10.14107/j.cnki.kzgc.20200792
    [93] Huang Z J, Li F M, Luan X D, et al. A weakly supervised method for mud detection in ores based on deep active learning. Math Probl Eng, 2020, 2020: 3510313
    [94] Zhao X J, Li J. A method of coal gangue detection based on deep learning. J Min Sci Technol, 2021, 6(6): 730 doi: 10.19606/j.cnki.jmst.2021.06.012

    趙學軍, 李建. 一種基于深度學習的煤矸石檢測方法. 礦業科學學報, 2021, 6(6):730 doi: 10.19606/j.cnki.jmst.2021.06.012
    [95] Liu Y, Zhang Z L, Liu X, et al. Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size. Miner Eng, 2021, 172: 107020 doi: 10.1016/j.mineng.2021.107020
    [96] Liu Y, Zhang Z L, Liu X, et al. Deep learning-based image classification for online multi-coal and multi-class sorting. Comput Geosci, 2021, 157: 104922 doi: 10.1016/j.cageo.2021.104922
    [97] Liu Y, Zhang Z L, Liu X, et al. Deep learning based mineral image classification combined with visual attention mechanism. IEEE Access, 2021, 9: 98091 doi: 10.1109/ACCESS.2021.3095368
    [98] Fu Y, Aldrich C. Quantitative ore texture analysis with convolutional neural networks. IFAC-PapersOnLine, 2019, 52(14): 99 doi: 10.1016/j.ifacol.2019.09.171
  • 加載中
圖(10)
計量
  • 文章訪問數:  1285
  • HTML全文瀏覽量:  346
  • PDF下載量:  205
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-23
  • 網絡出版日期:  2022-03-15
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回