<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

石油套管鋼管壁內缺陷的形成機理

楊文魁 楊健 宋景凌 李恒華 周旋 劉合萍

楊文魁, 楊健, 宋景凌, 李恒華, 周旋, 劉合萍. 石油套管鋼管壁內缺陷的形成機理[J]. 工程科學學報, 2022, 44(9): 1566-1574. doi: 10.13374/j.issn2095-9389.2022.01.11.002
引用本文: 楊文魁, 楊健, 宋景凌, 李恒華, 周旋, 劉合萍. 石油套管鋼管壁內缺陷的形成機理[J]. 工程科學學報, 2022, 44(9): 1566-1574. doi: 10.13374/j.issn2095-9389.2022.01.11.002
YANG Wen-kui, YANG Jian, SONG Jing-ling, LI Heng-hua, ZHOU Xuan, LIU He-ping. Formation mechanism of defects in the wall of a petroleum casing steel pipe[J]. Chinese Journal of Engineering, 2022, 44(9): 1566-1574. doi: 10.13374/j.issn2095-9389.2022.01.11.002
Citation: YANG Wen-kui, YANG Jian, SONG Jing-ling, LI Heng-hua, ZHOU Xuan, LIU He-ping. Formation mechanism of defects in the wall of a petroleum casing steel pipe[J]. Chinese Journal of Engineering, 2022, 44(9): 1566-1574. doi: 10.13374/j.issn2095-9389.2022.01.11.002

石油套管鋼管壁內缺陷的形成機理

doi: 10.13374/j.issn2095-9389.2022.01.11.002
基金項目: 國家自然科學基金資助項目(U1960202)
詳細信息
    通訊作者:

    E-mail: yang_jian@t.shu.edu.cn

  • 中圖分類號: TF761.3

Formation mechanism of defects in the wall of a petroleum casing steel pipe

More Information
  • 摘要: 針對某石油套管鋼管壁內缺陷,采用掃描電鏡?能譜儀(SEM-EDS)分析,并結合FactSage8.0軟件計算進行研究,結果表明缺陷縱向面主要由淺條紋及深條紋組成,淺條紋處存在大量MgO·Al2O3夾雜物,深條紋處有大量的Al2O3、MgO·Al2O3、CaO·Al2O3·SiO2等夾雜物聚集在一起。缺陷橫截面上的夾雜物主要為CaO·Al2O3·SiO2、CaO·Al2O3·MgO和CaO·Al2O3·MgO·SiO2 3類。推測鋼管壁內缺陷形成機理主要為:①大包鋼水在澆注末期鋼水卷帶鋼包渣進入中間包鋼水中,該渣滴隨后吸附鋼中高Al2O3含量的微細xAl2O3·yCaO或Al2O3夾雜物,導致渣滴中的Al2O3含量升高;②大包鋼水在真空脫氣(VD)精煉過程大Ar氣攪拌下卷入了鋼包渣,該渣滴隨后吸附鋼中的微細Al2O3夾雜物,導致渣滴中的Al2O3含量升高;以上兩種形式形成的渣滴在凝固冷卻過程中,轉變為CaO·Al2O3·SiO2, CaO·Al2O3·MgO,CaO·Al2O3·SiO2·MgO 3種類型的夾雜物。圓管坯在穿孔變形過程中,在縱向拉應力和橫向切應力作用下,使卷入的大型渣滴沿縱向及橫截面延伸擴展,最終形成鋼管壁內的缺陷。

     

  • 圖  1  樣品缺陷及缺陷處橫截面取樣示意圖

    Figure  1.  Schematic diagram of the sample defects and cross-sectional sampling of the defect zone

    圖  2  樣品淺條紋缺陷處典型夾雜物形貌及成分面掃圖

    Figure  2.  Morphology and scanned maps of typical inclusions at the shallow stripe defect zone

    圖  3  樣品深條紋缺陷處典型夾雜物形貌及面掃圖

    Figure  3.  Morphology and scanned maps of typical inclusions at the deep stripe defect zone

    圖  4  各橫截面觀察單元取樣示意圖

    Figure  4.  Sampling diagrams of observation units on each cross-section

    圖  5  各橫截面觀察單元及各橫截面總面積的變化

    Figure  5.  Changes of the area of each observation unit and the total area of each cross-section

    圖  6  各橫截面處夾雜物組成在CaO?Al2O3?SiO2相圖中的分布(1600 °C)  

    Figure  6.  Distribution of the inclusion composition in the CaO?Al2O3?SiO2 phase diagram at each cross-section (1600 ℃)

    圖  7  各橫截面處夾雜物組成在CaO?Al2O3?MgO相圖中的分布 (1600 °C)  

    Figure  7.  Distribution of the inclusion composition in the CaO?Al2O3?MgO phase diagram at each cross-section (1600 ℃)

    圖  8  各橫截面上CaO·Al2O3·MgO·SiO2類夾雜物各組成平均成分及堿度R的變化

    Figure  8.  Changes of the average composition and basicity R of CaO·Al2O3·MgO·SiO2 inclusions on each cross-section

    圖  9  橫截面缺陷處典型夾雜物的形貌與面掃描圖. (a~c) 形貌圖; (d) 面掃描圖

    Figure  9.  Morphology and scanned maps of typical inclusions at the cross-section of the defect zone: (a–c) morphology images; (d) scanned map images

    圖  10  依據中間包鋼液成分的Mg?Al?Ca?O?S?Si夾雜物的平衡隨Ca和Al質量分數的變化(1600 °C)

    Figure  10.  Calculated equilibrium phase diagram of Mg?Al?Ca?O?S?Si inclusions in molten steel in tundish at different Ca and Al contents (1600 °C)

    圖  11  卷入鋼包渣在凝固冷卻過程中的各相成分變化

    Figure  11.  Transformation of the ladle slag entrainment during solidification and cooling

    圖  12  缺陷中夾雜物形成機理:第一種方式

    Figure  12.  Formation mechanism of inclusions at the defect zone: the first way

    圖  13  缺陷中夾雜物形成機理:第二種方式

    Figure  13.  Formation mechanism of inclusions at the defect zone: the second way

    表  1  鋼包渣的主要成分(質量分數)

    Table  1.   Composition of ladle slag %

    CaOSiO2Al2O3MgOT.Fe
    59.912.021.64.930.48
    下載: 導出CSV

    表  2  中間包鋼水成分(質量分數)

    Table  2.   Composition of molten steel in tundish %

    CSiMnPSCrMoMgAlsCaONFe
    0.290.260.450.0090.00180.5470.8680.00040.0220.00200.00150.005497.543
    下載: 導出CSV

    表  3  缺陷處典型夾雜物組成(質量分數)

    Table  3.   Composition of typical inclusions at the defect zone %

    No.OMgAlSiCaMn
    141.615.539.4002.03
    243.611.942.102.400
    344.0036.65.9913.40
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Feng Q, Yu H, Liu B, et al. Influence of continuous casting billet surface defects on continuous rolling steel pipe surface quality. Phys Test Chem Anal (Part A Phys Test), 2015, 51(10): 679

    馮慶, 于輝, 劉波, 等. 連鑄坯表面缺陷對連軋鋼管表面質量的影響. 理化檢驗(物理分冊), 2015, 51(10):679
    [2] Deng M M, Peng Q C, Xiao Y Q, et al. Analysis on mottled spots defect of internal surface of ?185 mm×13 mm cold-drawn tube of steel 25Mn. Special Steel, 2017, 38(6): 23 doi: 10.3969/j.issn.1003-8620.2017.06.006

    鄧明明, 彭其春, 肖云清, 等. 25Mn鋼?185 mm×13 mm冷拔管內表面麻點狀缺陷的分析和控制工藝. 特殊鋼, 2017, 38(6):23 doi: 10.3969/j.issn.1003-8620.2017.06.006
    [3] Wang H, Zhao J M. Analysis on spot defects of E355 steel cold drawing cylinder tube. Phys Test Chem Anal (Part A Phys Test), 2020, 56(3): 57

    王樺, 趙健明. 某E355鋼冷拔油缸管點狀缺陷分析. 理化檢驗(物理分冊), 2020, 56(3):57
    [4] Lang Y M, Nie X H, Wang G F, et al. Cracking reason analysis of 20 steel seamless pipe. Hot Work Technol, 2016, 45(10): 257

    郎一鳴, 聶向暉, 王高峰, 等. 20鋼無縫管開裂原因分析. 熱加工工藝, 2016, 45(10):257
    [5] Chang Z T, Wei Z S, Li Z, et al. Analysis and improvement of quality defects in low-carbon steel continuously casting billets. Foundry Technol, 2017, 38(11): 2717

    常鎮韜, 魏占山, 李壯, 等. 低碳鋼連鑄坯質量缺陷分析及改進. 鑄造技術, 2017, 38(11):2717
    [6] Qin X H, Qi X F, Zhang X H. Cause analysis and improvement measures of scaly defects on inner surface of 37Mn5 steel pipe. China Metall, 2020, 30(8): 42

    秦緒華, 齊曉峰, 張秀華. 37Mn5鋼管內壁鱗片狀缺陷原因分析及改進措施. 中國冶金, 2020, 30(8):42
    [7] Zhou L X, Li B, Chen F Y, et al. Fracture analysis of tube 30CrMnSiA. Phys Exam Test, 2012, 30(4): 43

    周立新, 李波, 陳方玉, 等. 30CrMnSiA管材斷裂原因分析. 物理測試, 2012, 30(4):43
    [8] Li H G, Chen T M, Chen L, et al. Analyze and control for peeling defects on the internal surface of JS25Mn steel tube. Iron Steel Vanadium Titanium, 2016, 37(5): 153 doi: 10.7513/j.issn.1004-7638.2016.05.026

    李紅光, 陳天明, 陳亮, 等. JS25Mn鋼管內表面起皮缺陷分析與控制. 鋼鐵釩鈦, 2016, 37(5):153 doi: 10.7513/j.issn.1004-7638.2016.05.026
    [9] Ma Y X, Wang K, Men Z X, et al. Analysis on crack defects in Q345D steel billet. Foundry Technol, 2016, 37(11): 2372

    馬亞鑫, 王奎, 門正興, 等. Q345D鋼坯裂紋缺陷分析. 鑄造技術, 2016, 37(11):2372
    [10] Li J Z, Zheng X P. Analysis of 27SiMn hot rolled seamless steel pipe inner burr. Mater Prot, 2019, 52(12): 168

    李金展, 鄭喜平. 27SiMn熱軋無縫鋼管內壁毛刺的原因分析. 材料保護, 2019, 52(12):168
    [11] Ji D J, Qi X F. Cause analysis and improvement measures of inner folding defects of ?168 mm × 5 mm 0. 20% C steel tube. Special Steel, 2021, 42(1): 32

    季德靜, 齊曉峰. ?168 mm×5 mm 20鋼管內折缺陷原因分析及改進措施. 特殊鋼, 2021, 42(1):32
    [12] Wang Q M, Cheng G G, Li J Y, et al. Formation mechanism of large inclusions in 80t 20Cr?8Ni stainless steel casting for nuclear power. Steel Res Int, 2019, 90(12): 1900349 doi: 10.1002/srin.201900349
    [13] Chu Y P, Chen Z Y, Liu N, et al. Formation and control of spinel inclusions in high-speed heavy rail steel. Iron Steel, 2020, 55(1): 38

    儲焰平, 諶智勇, 劉南, 等. 高速重軌鋼中尖晶石夾雜物的形成及控制. 鋼鐵, 2020, 55(1):38
    [14] Long H, Cheng G G, Qiu W S, et al. Characteristics, sources analysis of large size inclusions and technical improvement during bearing steel production. China Metall, 2020, 30(9): 53

    龍鵠, 成國光, 丘文生, 等. 軸承鋼中大尺寸夾雜物的特征、來源及改進工藝. 中國冶金, 2020, 30(9):53
    [15] Ren Q, Jiang D B, Zhang L F, et al. Evolution and formation mechanism of inclusions in a Q235 steel. Iron Steel, 2020, 55(7): 47

    任強, 姜東濱, 張立峰, 等. Q235鋼中夾雜物演變規律和生成機理分析. 鋼鐵, 2020, 55(7):47
    [16] Yin Z Y, Zhang L F, Li C, et al. Analysis of evolution and formation mechanism of calcium-containing inclusions of Q345D steel. Iron Steel, 2020, 55(11): 47

    音正元, 張立峰, 李超, 等. Q345D鋼中含鈣類夾雜物的演變和生成機理分析. 鋼鐵, 2020, 55(11):47
    [17] Jiang M, Liu J C, Li K L, et al. Formation mechanism of large CaO?SiO2?Al2O3 inclusions in Si-deoxidized spring steel refined by low basicity slag. Metall Mater Trans B, 2021, 52(4): 1950 doi: 10.1007/s11663-021-02230-6
    [18] Miao Z Q, Cheng G G, Li S J, et al. Formation mechanism of large-size CaO–Al2O3–MgO–SiO2 inclusions in high carbon chromium bearing steel. ISIJ Int, 2021, 61(7): 2083 doi: 10.2355/isijinternational.ISIJINT-2020-729
    [19] Wang L Z, Li J Q, Yang S F, et al. Effect of calcium treatment on characteristics of non-metallic inclusions in steel containing high Al. Iron Steel, 2019, 54(11): 27

    王林珠, 李軍旗, 楊樹峰, 等. 高鋁鋼中鈣處理對非金屬夾雜物特征的影響. 鋼鐵, 2019, 54(11):27
    [20] Wang Y, Zhang L F, Ren Y, et al. Mechanism of inclusion evolution during refining process of 37Mn5 steel production. Iron Steel, 2020, 55(5): 39

    王祎, 張立峰, 任英, 等. 37Mn5鋼精煉過程夾雜物轉變機理. 鋼鐵, 2020, 55(5):39
    [21] Wang Y, Zhang L F, Yang W, et al. Evolution of non-metallic inclusion composition during cooling and solidification process of Q345 steel. Steelmaking, 2020, 36(2): 29

    王祎, 張立峰, 楊文, 等. Q345鋼液凝固及鑄坯冷卻過程中非金屬夾雜物的組成演變. 煉鋼, 2020, 36(2):29
    [22] Xiao W, Bao Y P, Wang M, et al. Inclusions evolution and control of non-aluminum deoxidized GCr15 bearing steel. Iron Steel, 2021, 56(1): 37

    肖微, 包燕平, 王敏, 等. 非鋁脫氧GCr15軸承鋼的夾雜物演變和控制. 鋼鐵, 2021, 56(1):37
    [23] Yin C L, Zhai W L, Jiang D C, et al. Source and control of large-size inclusions in 42CrMo steel. China Metall, 2021, 31(1): 36

    印傳磊, 翟萬里, 蔣棟初, 等. 42CrMo鋼大尺寸夾雜物的來源與控制. 中國冶金, 2021, 31(1):36
    [24] Niu K J, Yang W, Zhang L F, et al. Thermodynamics and industrial practice of formation of inclusions during solidification of tire cord steels. Iron Steel, 2020, 55(6): 61

    牛凱軍, 楊文, 張立峰, 等. 簾線鋼凝固過程夾雜物生成熱力學及工業實踐. 鋼鐵, 2020, 55(6):61
    [25] Zhang G F, Ji S, Zhang L F, et al. Study on transformation of non-metallic inclusions in 20CrMnTiH gear steel during solidification and cooling. Steelmaking, 2020, 36(3): 32

    張國鋒, 季莎, 張立峰, 等. 20CrMnTiH齒輪鋼凝固和冷卻過程中非金屬夾雜物的轉變研究. 煉鋼, 2020, 36(3):32
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數:  2107
  • HTML全文瀏覽量:  217
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-11
  • 網絡出版日期:  2022-02-21
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回