<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于綜合智能模型的碳鋼大氣腐蝕重要變量提取和依賴關系挖掘

張明 付冬梅 張達威 馬菱薇 邵立珍

張明, 付冬梅, 張達威, 馬菱薇, 邵立珍. 基于綜合智能模型的碳鋼大氣腐蝕重要變量提取和依賴關系挖掘[J]. 工程科學學報, 2023, 45(3): 407-418. doi: 10.13374/j.issn2095-9389.2022.01.10.007
引用本文: 張明, 付冬梅, 張達威, 馬菱薇, 邵立珍. 基于綜合智能模型的碳鋼大氣腐蝕重要變量提取和依賴關系挖掘[J]. 工程科學學報, 2023, 45(3): 407-418. doi: 10.13374/j.issn2095-9389.2022.01.10.007
ZHANG Ming, FU Dong-mei, ZHANG Da-wei, MA Ling-wei, SHAO Li-zhen. Extraction of important variables and mining of dependencies of atmospheric corrosion of carbon steel based on a comprehensive intelligent model[J]. Chinese Journal of Engineering, 2023, 45(3): 407-418. doi: 10.13374/j.issn2095-9389.2022.01.10.007
Citation: ZHANG Ming, FU Dong-mei, ZHANG Da-wei, MA Ling-wei, SHAO Li-zhen. Extraction of important variables and mining of dependencies of atmospheric corrosion of carbon steel based on a comprehensive intelligent model[J]. Chinese Journal of Engineering, 2023, 45(3): 407-418. doi: 10.13374/j.issn2095-9389.2022.01.10.007

基于綜合智能模型的碳鋼大氣腐蝕重要變量提取和依賴關系挖掘

doi: 10.13374/j.issn2095-9389.2022.01.10.007
基金項目: 科技部科技基礎資源調查專項資助項目(2019FY101404);北京科技大學順德研究生院科技創新專項資助項目(BK20AE004)
詳細信息
    通訊作者:

    付冬梅,E-mail: fdm_ustb@ustb.edu.cn

    張達威,E-mail: dzhang@ustb.edu.cn

  • 中圖分類號: TG172.3

Extraction of important variables and mining of dependencies of atmospheric corrosion of carbon steel based on a comprehensive intelligent model

More Information
  • 摘要: 針對碳鋼在大氣腐蝕過程中影響變量多且作用機制復雜的問題,提出一種基于綜合智能模型的重要變量挖掘框架,利用該框架可以挖掘影響碳鋼早期大氣腐蝕的重要環境變量及其對腐蝕電偶電流產生的影響。本文通過大氣腐蝕監測儀(ACM)收集了我國5個試驗站點的大氣腐蝕數據,首先,構建了隨機森林(RF)、梯度提升回歸樹(GBRT)和BP神經網絡(BPNN)三種機器學習模型;其次,利用多模型集成重要變量選擇算法(MEIVS)量化環境變量的重要性并提取影響碳鋼早期大氣腐蝕的重要環境變量;最后,繪制了環境變量與腐蝕電偶電流的局部依賴曲線(PDP)。仿真結果顯示,MEIVS算法挖掘出的重要環境變量更符合大氣腐蝕的先驗規律;PDP與MEIVS算法的結論具有很好的一致性,重要環境變量對應的PDP的變化幅度大,且PDP的變化趨勢能夠反映環境變量對腐蝕電偶電流的影響。

     

  • 圖  1  MEIVS算法流程圖. (a) MEIVS算法主流程; (b) 排列算法流程

    Figure  1.  Flowchart of the multimodel ensemble important variable selection (MEIVS) algorithm: (a) main process steps of the MEIVS algorithm; (b) process steps of the permutation algorithm

    圖  2  各地區環境變量重要性得分. (a) 北京; (b) 杭州; (c) 武漢; (d) 青島; (e) 三亞

    Figure  2.  Importance score of the environmental variables in each region: (a) Beijing; (b) Hangzhou; (c) Wuhan; (d) Qingdao; (e) Sanya

    圖  3  各地區相對濕度的局部依賴圖.(a)北京;(b)杭州;(c)武漢;(d)青島;(e)三亞

    Figure  3.  PDP of the relative humidity in each region: (a) Beijing; (b) Hangzhou; (c) Wuhan; (d) Qingdao; (e) Sanya

    圖  4  各地區溫度的局部依賴圖. (a) 北京; (b) 杭州; (c) 武漢; (d) 青島; (e) 三亞

    Figure  4.  PDP of the temperature in each region: (a) Beijing; (b) Hangzhou; (c) Wuhan; (d) Qingdao; (e) Sanya

    圖  5  各地區特定環境下溫度、相對濕度及降雨對對數腐蝕電偶電流的影響.(a)北京;(b)杭州;(c)武漢;(d)青島;(e)三亞

    Figure  5.  Influence of temperature, relative humidity, and rainfall on the logarithmic corrosion galvanic current in a specific environment of each region: (a) Beijing; (b) Hangzhou; (c) Wuhan; (d) Qingdao; (e) Sanya

    圖  6  各地區污染物的局部依賴圖.(a)北京;(b)杭州;(c)武漢;(d)青島;(e)三亞

    Figure  6.  PDP of pollutants in each region: (a) Beijing; (b) Hangzhou; (c) Wuhan; (d) Qingdao; (e) Sanya

    表  1  大氣腐蝕試驗場地理和氣候信息

    Table  1.   Geographic and climatic information of the atmospheric corrosion test sites

    RegionLongitude and latitudeClimate typeExternal environmentCorrosion grade
    Beijing116°21′E, 39°59′NTemperate monsoon climateCountryC3–C4
    Hangzhou120°30′E, 30°22′NSubtropical monsoon humid climateIndustrial zoneC4
    Wuhan114°15′E, 30°34′NSubtropical monsoon climateCountryC3–C4
    Qingdao120°26′E, 36°04′NTemperate monsoon climateCoastal industrial zoneC5–CX
    Sanya109°21′E, 18°17′NTropical marine monsoon climateCoastal industrial zoneC4
    下載: 導出CSV

    表  2  三種模型在不同地區的擬合表現

    Table  2.   Fitting performance of the three models in different regions

    RegionModelTraining set Testing set
    R2RMSER2RMSE

    Beijing
    RF0.9560.4080.8150.743
    GBRT0.8780.6790.7880.795
    BPNN0.7670.9380.6421.034

    Hangzhou
    RF0.9510.4720.7951.053
    GBRT0.8220.9030.7651.125
    BPNN0.6871.1970.6961.280

    Wuhan
    RF0.9460.4380.7511.085
    GBRT0.8950.6110.7611.064
    BPNN0.7270.9860.7001.191

    Qingdao
    RF0.9520.6200.7561.381
    GBRT0.8920.9260.7081.511
    BPNN0.7851.3040.6611.628

    Sanya
    RF0.9310.5870.6881.501
    GBRT0.7861.0360.6541.581
    BPNN0.6661.2920.5981.704
    下載: 導出CSV

    表  3  不同地區PCC和SCC分析結果

    Table  3.   Pearson’s and Spearman’s correlation coefficient results in different regions

    RegionMethodResult
    TRHRainfallO3PM2.5PM10SO2NO2
    BeijingPCC?0.320.680.69?0.080.240.210.110.11
    SCC?0.170.560.43?0.030.280.200.080.12
    HangzhouPCC?0.650.700.67?0.25?0.04?0.06?0.160.23
    SCC?0.740.780.63?0.340.030.02?0.140.42
    WuhanPCC?0.630.650.50?0.32?0.10?0.24?0.25?0.02
    SCC?0.730.730.36?0.41?0.16?0.27?0.360.01
    QingdaoPCC?0.600.460.52?0.15?0.200.03?0.24?0.19
    SCC?0.620.480.49?0.11?0.160.06?0.45?0.23
    SanyaPCC?0.530.590.510.070.03?0.06?0.020.10
    SCC?0.540.640.430.010.06?0.02?0.110.07
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tsuru T, Nishikata A, Wang J. Electrochemical studies on corrosion under a water film. Mater Sci Eng A, 1995, 198(1-2): 161 doi: 10.1016/0921-5093(95)80071-2
    [2] Wan S, Hou J, Zhang Z F, et al. Monitoring of atmospheric corrosion and dewing process by interlacing copper electrode sensor. Corros Sci, 2019, 150: 246
    [3] Palsson N S, Wongpinkaew K, Khamsuk P, et al. Outdoor atmospheric corrosion of carbon steel and weathering steel exposed to the tropical-coastal climate of Thailand. Mater Corros, 2020, 71(6): 1019 doi: 10.1002/maco.201911340
    [4] Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion. Materials, 2019, 12(7): 1065 doi: 10.3390/ma12071065
    [5] Wang J R, Bai Z H, Xiao K, et al. Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments. Appl Surf Sci, 2019, 467-468: 889 doi: 10.1016/j.apsusc.2018.10.244
    [6] Meng J T, Zhang H, Wang X, et al. Data mining to atmospheric corrosion process based on evidence fusion. Materials, 2021, 14(22): 6954
    [7] Oesch S. The effect of SO2, NO2, NO and O3 on the corrosion of unalloyed carbon steel and weathering steel—The results of laboratory exposures. Corros Sci, 1996, 38(8): 1357 doi: 10.1016/0010-938X(96)00025-X
    [8] Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment. Corros Sci, 2018, 137: 163 doi: 10.1016/j.corsci.2018.03.042
    [9] International Organization for Standardization. ISO 9226—2012 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. Geneve: International Organization for Standardization Press, 2012
    [10] International Organization for Standardization. ISO 9223—2012 Corrosion of Metals and Alloys— Corrosivity of Atmospheres—Classification, Determination and Estimation. Geneve: International Organization for Standardization Press, 2012
    [11] Zhi Y J, Jin Z H, Lu L, et al. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model. Corros Sci, 2021, 178: 109084
    [12] Yan L C, Diao Y P, Lang Z Y, et al. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. Sci Technol Adv Mater, 2020, 21(1): 359 doi: 10.1080/14686996.2020.1746196
    [13] Mansfeld F, Kenkel J V. Electrochemical monitoring of atmospheric corrosion phenomena. Corros Sci, 1976, 16(3): 111
    [14] Yang D M, Mei H W, Wang L M. Corrosion measurement of the atmospheric environment using galvanic cell sensors. Sensors, 2019, 19(2): 331 doi: 10.3390/s19020331
    [15] Mizuno D, Suzuki S, Fujita S, et al. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor. Corros Sci, 2014, 83: 217
    [16] Shi Y N, Fu D M, Zhou X Y, et al. Data mining to online galvanic current of zinc/copper Internet atmospheric corrosion monitor. Corros Sci, 2018, 133: 443 doi: 10.1016/j.corsci.2018.02.005
    [17] Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J Mater Sci Technol, 2021, 64: 214 doi: 10.1016/j.jmst.2020.01.023
    [18] Lipton Z C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 2018, 16(3): 31
    [19] Pei Z B, Xiao K, Chen L H, et al. Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments. Metals, 2020, 10(7): 905
    [20] Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corros Sci, 2020, 170: 108697
    [21] Zhang M, Fu D M, Cheng X Q, et al. A two-step method for constructing a cusp catastrophe model based on the selection of important variables. Chin J Eng,http://www.jiang8.net/article/doi/10.13374/j.issn2095-9389.2021.07.19.006

    張明, 付冬梅, 程學群, 等. 基于變量選擇的尖點突變模型的兩步構建方法. 工程科學學報,http://www.jiang8.net/article/doi/10.13374/j.issn2095-9389.2021.07.19.006
    [22] Breiman L. Random forests. Machine Learning, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
    [23] Fisher A, Rudin C, Dominici F. All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously [J/OL]. arXiv preprint (2018-06-23) [2022-01-10].https://arxiv.org/abs/1801.01489
    [24] Biecek P. DALEX: explainers for complex predictive models [J/OL]. arXiv preprint (2018-06-23) [2022-01-10].https://arxiv.org/abs/1806.08915
    [25] Zhang Z H, Beck M W, Winkler D A, et al. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann Transl Med, 2018, 6(11): 216 doi: 10.21037/atm.2018.05.32
    [26] Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron. J Electrochem Soc, 1997, 144(4): 1244 doi: 10.1149/1.1837578
    [27] Xia Y, Liu P, Zhang J Q, et al. Corrosion behavior of weathering steel under thin electrolyte layer at different relative humidity. J Mater Eng Perform, 2018, 27(1): 202 doi: 10.1007/s11665-017-3101-0
    [28] Xiao K, Gao X, Yan L D, et al. Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: Salty dust and diurnal temperature difference. Chem Eng J, 2018, 336: 92 doi: 10.1016/j.cej.2017.11.017
    [29] Koushik B G, van den Steen N, Mamme M H, et al. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. J Mater Sci Technol, 2021, 62: 254
    [30] Zhi Y J, Yang T, Fu D M. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels. J Mater Sci Technol, 2020, 49: 202
    [31] Ha M Y, Jeon S H, Jeong Y S, et al. Corrosion environment monitoring of local structural members of a steel truss bridge under a marine environment. Int J Steel Struct, 2021, 21(1): 167 doi: 10.1007/s13296-020-00424-3
    [32] Rajendran K, Sumi A, Bhattachariya M K, et al. Influence of relative humidity in Vibrio cholerae infection: A time series model. Indian J Med Res, 2011, 133: 138
    [33] Yoon Y, Angel J D, Hansen D C. Atmospheric corrosion of silver in outdoor environments and modified accelerated corrosion chambers. Corrosion, 2016, 72(11): 1424
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數:  482
  • HTML全文瀏覽量:  147
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-10
  • 網絡出版日期:  2022-02-21
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回