-
摘要: 為打通轉爐煉鋼過程錳礦熔融還原技術路徑,提高錳的收得率,對錳礦熔融還原過程和提高錳收得率的工藝參數進行了熱力學探討,并在某鋼廠200 t轉爐上開展了工業試驗研究。研究結果表明:高效穩定的鐵水“三脫”預處理技術是錳礦熔融還原技術成功的基本前提;通過理論計算,在爐渣中的(MnO)質量分數為5%~10%,終點[C]質量分數控制在0.13%~0.36%時,終點鋼液[Mn]質量分數可控制在0.3%以上。工業試驗主要通過采用雙渣法冶煉操作,在確保前期鐵水低磷的條件下盡可能控制少渣量、降低爐渣中氧化鐵,從而實現加入錳礦后提高錳收得率;并在現有工藝控制條件下,錳礦加入10 kg·t?1以內時,工業試驗可使錳礦還原過程錳收得率超過40%,平均為51.40%;為進一步提高錳收得率,建議嚴格將錳礦熔融還原渣料總量控制在40~60 kg·t?以內,石灰加入量控制在10~15 kg·t?1以內;研究結果為錳礦熔融還原技術的開發和應用提供重要參考。Abstract: The smelting reduction of manganese ore in the converter has been reported in China since the 1990s, and some steel enterprises have successively carried out industrial tests of this technology. However, the recovery ratio of Mn in manganese ore is low and fluctuates greatly due to various reasons such as inadequate hot-metal pretreatment, the poor bottom blowing effect of the converter furnace, and unreasonable positioning of the smelting end point. The smelting reduction of manganese ore has not been successfully applied in converter steelmaking and failed to benefit steel enterprises. In this study, the thermodynamic parameters of manganese ore melting reduction were discussed to improve the recovery ratio and yield of manganese and find a way to directly use manganese ore in a converter. The industrial test was carried out in a 200 t converter at a steel mill. Results showed that the efficient and stable ‘tri-de’ (dephosphorization/desulphurization/desiliconization) hot-metal pretreatment was the basic premise for the success of manganese ore smelting reduction. The theoretical calculation revealed that when the content of MnO in slag is 5%–10% and the terminal content of [C] is 0.13%–0.36%, the end-point of [Mn] in molten steel can be controlled above 0.3%. For an improved recovery ratio of Mn in manganese, the industrial test mainly adopted the smelting operation of double-slag operation to ensure that the amount of slag and iron oxide in the slag was reduced as much as possible under low phosphorus content in molten iron in the early stage. Under the existing process control conditions, the industrial test results showed a manganese yield of more than 40% and an average value of 51.40% when the added amount of manganese ore was under 10 kg·t?1. For an excellent manganese yield, the total amount of manganese smelting reduction slag must be strictly controlled from 40 kg·t?1 to 60 kg·t?1, and the amount of lime must be 10–15 kg·t–1. This work provides an important reference for the development and direct application of manganese ore in the converter.
-
表 1 國內外鋼鐵廠轉爐錳礦熔融還原工藝(國內僅限于工業試驗)[14-21]
Table 1. Smelting reduction of manganese ore in converter worldwide (industrial test in domestic) [14-21]
Steel plant Year Converter capacity/
tManganese ore addition/
(kg?t?1)Total manganese mass fraction in manganese ore/% End point carbon mass fraction/
%Alloying process Manganese yield/
%Fukuyama 1987 250 15–20 54.4 0.1 Hot metal triple stripping + less slag smelting 65–70 Kobe 1990 100 10 49.2 0.25 70 Keihin 1990 250 10 47 0.20 65 Oita 1992 340 12–13 43.2 0.14 70–80 Pansteel 1988 120 4–6 17.44 Traditional smelting process of converter 20 Shanggang No.5 plant 1992 15 22 20.3 30 Laiwu Steel 2001 120 4 27 0.11 23 Jinan Steel 2002 25 10 30 0.1 36 Tangshan Steel 2004 30 6–10 24 0.07 13–27 WISCO 2010 100 4–4.3 42 0.097 30 Linyi steel pipe 2012 120 4 42 0.119 25–35 Xingtai Steel 2014 50 20 15 0.084 26.1 Guofeng Steel 2014 120 5 32 0.06 13 Fushun Xingang 2015 45 10.16 12.68 0.06 48 Baosteel 2002 300 5–8.7 35 0.05 Hot metal triple stripping + less slag smelting 50–67 Baosteel 2005 300 5–15 35 0.05 Hot metal triple stripping + duplex process 70 WISCO 2013 10–20 48.24 0.04~0.05 Desulfurization of hot metal + double slag process 35–45 表 2 某鋼廠試驗鋼種82B化學成分(質量分數)
Table 2. Chemical composition of 82B from a steel plant
% Steel grade C Si Mn P S Cr V SWRH82B-L 0.79–0.86 0.15–0.35 0.60–0.90 $\leqslant$0.025 $\leqslant$0.025 0.15–0.35 0.040–0.060 Target value 0.82–0.82 0.20 0.80 $\leqslant$0.020 $\leqslant$0.010 0.25 0.050 Internal control value 0.74–0.81 0.18–0.22 0.72–0.78 $\leqslant$0.020 $\leqslant$0.010 0.23–0.27 0.048–0.052 表 3 研究試驗方案
Table 3. Test plan of the experiments
No. Manganese ore type Manganese ore scheme addition/
(kg·t?1)Actual addition amount
of manganese ore/
tActual addition amount of manganese ore/
(kg·t?1)Remarks 1-1 High-grade manganese ore 7.5 1548 7.7 Effect of manganese ore addition on manganese yield 1-2 10 1974 9.4 1-3 15 2929 14.1 2-1 Low-grade manganese ore 5 1000 4.9 Effect of manganese ore addition on manganese yield 2-2 997 4.9 2-3 1043 5.4 2-4 1048 5.3 2-5 1050 5.3 2-6 7.5 1625 7.7 2-7 1654 8.0 2-8 10 2048 10.6 2-9 12.5 2554 13.4 2-10 15 2547 14.1 2-11 20 4069 20.3 表 4 試驗用錳礦的化學成分(質量分數)
Table 4. Chemical composition of the manganese ore for the industrial test
% Name T.Mn SiO2 T.Fe S P High-grade manganese ore 48 10.86 8.31 0.004 0.0038 Low-grade manganese ore 35 8.46 4.67 0.034 0.0019 表 5 鐵水條件和鋼水終點情況
Table 5. Molten iron condition and terminal condition of molten steel
No. Hot metal condition End-point condition Manganese yield/% w[P]/% T/℃ w[C]/% w[Mn]/% w[P]/% w[S]/% T/℃ 1-1 0.117 1303 0.16 0.19 0.015 0.017 1594 40.61 1-2 0.114 1258 0.16 0.211 0.0144 0.016 1597 49.10 1-3 0.146 1270 0.14 0.21 0.018 0.015 1620 32.43 2-1 0.132 1351 0.20 0.13 0.014 0.011 1580 46.77 2-2 0.13 1248 0.11 0.134 0.0171 0.014 1594 48.13 2-3 0.138 1289 0.16 0.2 0.017 0.013 1587 79.30 2-4 0.144 1277 0.16 0.18 0.014 0.011 1595 48.39 2-5 0.137 1280 0.18 0.12 0.011 0.014 1575 37.67 2-6 0.13 1252 0.21 0.207 0.0181 0.009 1580 60.99 2-7 0.124 1305 0.14 0.218 0.0171 0.014 1604 60.01 2-8 0.141 1266 0.15 0.21 0.014 0.01 1588 43.04 2-9 0.136 1279 0.12 0.20 0.015 0.016 1610 29.85 2-10 0.13 1293 0.11 0.18 0.011 0.013 1586 26.26 2-11 0.146 1264 0.12 0.22 0.015 0.014 1569 23.95 表 6 轉爐終點爐渣成分
Table 6. Composition of converter terminal slag
No. Composition of converter final slag Slag basicity wCaO/% $w_{ {\rm{Si} }{\rm{O} }_{2} }$/% wMgO/% wT.Fe/% w$w_{ {\rm{P} }_{2}{\rm{O} }_{5} }$/% wMn/% $w_{{\rm{Al} }_{2}{\rm{O} }_{3}}$/% 1-1 42.47 10.94 6.79 19.73 2.66 5.84 1.22 3.88 1-2 45.09 11.12 7.81 14.48 2.68 8.01 1.71 4.05 1-3 The final slag sample was not obtained 2-1 43.69 14.65 5.92 9.12 3.10 3.67 1.5 3.10 2-2 41.20 13.31 5.02 13.53 2.97 4.71 1.35 4.84 2-3 49.25 10.17 8.88 14.76 2.61 4.88 1.11 4.57 2-4 48.58 10.62 8.01 15.98 2.65 4.63 1.13 4.13 2-5 46.72 11.30 10.88 14.96 2.85 4.40 1.10 3.28 2-6 43.36 13.23 4.76 11.65 3.12 4.80 1.38 3.25 2-7 43.23 13.31 4.72 11.50 3.12 4.79 1.38 4.05 2-8 45.71 11.29 8.06 16.44 2.86 6.36 1.11 3.68 2-9 46.58 12.66 7.54 14.45 2.88 6.34 1.00 4.19 2-10 43.44 10.36 7.35 18.76 2.17 7.23 1.02 3.88 2-11 The final slag sample was not obtained 表 7 爐渣物相質量分數和堿度
Table 7. Slag phase mass fraction and slag basicity
No. Mass fraction of each phase, % Slag basicity C3S C2S RO C2F f-CaO a 35-40 30-35 5-10 5-10 3-5 3.10 b 35-40 20-25 10-15 10-15 3-5 3.28 www.77susu.com -
參考文獻
[1] Wu W, Gao Q, Zhang B, et al. Reaction kinetics during direct alloying of manganese ore cored wire. J Iron Steel Res Int, 2020, 27(3): 282 doi: 10.1007/s42243-020-00363-7 [2] Dai S F, Wu W, Zhang X D, et al. Analysis of manganese balance between slag and steel at end-point of BOF. China Metall, 2017, 27(1): 12戴詩凡, 吳偉, 張曦東, 等. 轉爐終點渣鋼間錳平衡狀況分析. 中國冶金, 2017, 27(1):12 [3] Fu J T, Hu S C. Experimental study on a refractory low-grade ferromanganese ore. Multipurp Util Miner Resour, 2021(3): 158 doi: 10.3969/j.issn.1000-6532.2021.03.025付金濤, 胡生操. 某難選高鐵高磷錳礦石同步還原分離實驗研究. 礦產綜合利用, 2021(3):158 doi: 10.3969/j.issn.1000-6532.2021.03.025 [4] Wang F. Experimental study on processing of high-grade manganse oxide ore by coal-based reduction roasting. Min Metall Eng, 2021, 41(2): 80 doi: 10.3969/j.issn.0253-6099.2021.02.019王鈁. 煤基還原焙燒法處理高品位氧化錳礦試驗研究. 礦冶工程, 2021, 41(2):80 doi: 10.3969/j.issn.0253-6099.2021.02.019 [5] Wu X Y, Fu X L. Benefit analysis of replacing manganese ore with waste manganese slag in converter. China’s Manganese Ind, 1988, 6(5): 32伍先冶, 付先良. 用廢錳渣取代錳礦用于轉爐煉鋼的效益分析. 中國錳業, 1988, 6(5):32 [6] Pang J M, Pan C C, Ma Y N, et al. Experimental study on preparation of manganese-containing pig iron from low-grade manganese ore by microwave smelting. China Nonferrous Metall, 2020, 49(3): 83龐建明, 潘聰超, 馬永寧, 等. 微波冶煉低品位錳礦制備含錳生鐵的試驗研究. 中國有色冶金, 2020, 49(3):83 [7] Gao Q, Pang J M, Ma Y N, et al. Study on preparation of high carbon ferromanganese from carbon-bearing manganese ore pellets with microwave heating. Nonferrous Met Extr Metall, 2019(3): 15高琦, 龐建明, 馬永寧, 等. 微波加熱含碳錳礦球團冶煉高碳錳鐵的研究. 有色金屬(冶煉部分), 2019(3):15 [8] Wan J Y, Chen T J, Zhou X L, et al. Research on the direct reduction test with high manganese iron ore to fortify red mud. Sinter Pelletizing, 2020, 45(6): 10萬軍營, 陳鐵軍, 周仙霖, 等. 高錳鐵礦強化赤泥直接還原試驗研究. 燒結球團, 2020, 45(6):10 [9] Zhang B, Liu L, Li C X, et al. Current research and countermeasures of direct alloying of manganese ore in BOF. J Hunan Univ Technol, 2018, 32(5): 50 doi: 10.3969/j.issn.1673-9833.2018.05.009張波, 劉浪, 李春曉, 等. 轉爐錳礦直接合金化國內外現狀及對策. 湖南工業大學學報, 2018, 32(5):50 doi: 10.3969/j.issn.1673-9833.2018.05.009 [10] Matsuo M, Saito C, Katayama H, et al. Smelting reduction of iron ore with top-and-bottom blowing converter. Tetsu-to-Hagane, 1990, 76(11): 1871 doi: 10.2355/tetsutohagane1955.76.11_1871 [11] Kaneko T, Matsuzaki T, Kugimiya T, et al. Improvement of Mn yield in less slag blowing at BOF by use of sintered manganese ore. Tetsu-to-Hagane, 1993, 79(8): 941 doi: 10.2355/tetsutohagane1955.79.8_941 [12] Yamase O, Ikeda M, Fukumi J, et al. Industrialization of a new steelmaking process utilizing hot metal pretreatment and smelting reduction. Tetsu-to-Hagane, 1988, 74(2): 270 doi: 10.2355/tetsutohagane1955.74.2_270 [13] Kawasaki S, Hirahashi H, Aoki M, et al. Improvement of the refining process around combined blowing converter in Kobe works. Tetsu-to-Hagane, 1990, 76(11): 1900 doi: 10.2355/tetsutohagane1955.76.11_1900 [14] Tabata Y, Terada O, Hasegawa T, et al. Manganese partition equilibrium in less slag blowing at BOF linked to high speed dephosphorization of hot metal. Tetsu-to-Hagane, 1990, 76(11): 1916 doi: 10.2355/tetsutohagane1955.76.11_1916 [15] Zhang H J, Shen G, Wang X Z, et al. Trials on the application of poor manganese ore to the converter in steel refining. Steelmaking, 1992, 8(2): 50張懷珺, 沈鋼, 王緒贊, 等. 貧錳礦在轉爐冶煉中應用的試驗研究. 煉鋼, 1992, 8(2):50 [16] Meng Z L, Yang X Y, Wang Y C. Discussion on manganese ore alloying. Shandong Metall, 2003, 25(Suppl 2): 111孟召來, 楊西銀, 王玉春. 錳礦合金化探討. 山東冶金, 2003, 25(增刊2): 111 [17] Xie Z K, Liu H B, Dai H Y, et al. Application of melting reduction technique of manganese ore in 25t converter at Jigang. Shandong Metall, 2002, 24(6): 36 doi: 10.3969/j.issn.1004-4620.2002.06.015謝中堃, 劉洪波, 戴輝永, 等. 錳礦石熔融還原技術在濟鋼25t轉爐上的應用. 山東冶金, 2002, 24(6):36 doi: 10.3969/j.issn.1004-4620.2002.06.015 [18] Li R S, Feng R M, Wei G Z, et al. Application of poor manganese ore in converter steel-making process. Steelmaking, 2004, 20(1): 13 doi: 10.3969/j.issn.1002-1043.2004.01.004李榮生, 馮潤明, 魏國增, 等. 貧錳礦在轉爐煉鋼工藝中的應用. 煉鋼, 2004, 20(1):13 doi: 10.3969/j.issn.1002-1043.2004.01.004 [19] Zhao Z F, Li X M, Shen J S. Experimental study on increase of end-point manganese by addition of manganese ore in converter. Steelmaking, 2010, 26(1): 40趙中福, 李小明, 沈繼勝. 轉爐煉鋼加錳礦提高終點錳含量的試驗研究. 煉鋼, 2010, 26(1):40 [20] Yang C X, Li P C, Lu Z J, et al. Residual manganese content in molten steel of end-point of BOF and its influencing factors. China Metall, 2012, 22(11): 42楊傳信, 李鵬超, 盧昭軍, 等. 轉爐終點鋼水殘錳質量分數及其影響因素分析. 中國冶金, 2012, 22(11):42 [21] Ji D D, Wang Q K, Li F W, et al. Production practice of reductive alloying for using manganese ore // Seminar on Common Technology of Low Cost Steelmaking 2014. Nanjing, 2014: 227姬旦旦, 王秋坤, 李富偉, 等. 轉爐使用錳礦直接還原合金化的生產實踐 // 2014年低成本煉鋼共性技術研討會. 南京, 2014:227 [22] Qiao Z, Zhang L M, Qiao L Y. Industrial test to increase end manganese content of converter with manganese ore. Hebei Metall, 2014(12): 19 doi: 10.13630/j.cnki.13-1172.2014.1205喬崢, 張利民, 喬立巖. 利用錳礦提高轉爐終點錳含量的工業試驗. 河北冶金, 2014(12):19 doi: 10.13630/j.cnki.13-1172.2014.1205 [23] Wen Y C, Zhao H L, Gong M X, et al. Kinetics on direct alloying in steelmaking by using manganese pellets. J Univ Sci Technol Beijing, 1999(5): 428 doi: 10.3321/j.issn:1001-053X.1999.05.004文永才, 趙海雷, 公茂秀, 等. 煉鋼用錳球團礦直接合金化動力學. 北京科技大學學報, 1999(5):428 doi: 10.3321/j.issn:1001-053X.1999.05.004 [24] Dai S F, Wu W, Ma D, et al. Experiment on improving transfer of MnO in slag to molten steel. Iron Steel, 2017, 52(8): 35 doi: 10.13228/j.boyuan.issn0449-749x.20160551戴詩凡, 吳偉, 馬登, 等. 提高爐渣中MnO向鋼中傳遞的試驗. 鋼鐵, 2017, 52(8):35 doi: 10.13228/j.boyuan.issn0449-749x.20160551 [25] Wu W, Dai S F, Wang P, et al. Equilibrium kinetics of manganese-ore carbon-reduction between molten steel and slag. Ironmak Steelmak, 2019, 46(5): 469 doi: 10.1080/03019233.2017.1405149 [26] Huang X H. Ferrous Metallurgy Theory. 3nd Ed. Beijing: Metallurgical Industry Press, 2002黃希祜. 鋼鐵冶金原理. 3版. 北京: 冶金工業出版社, 2002 -