<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

轉爐錳礦熔融還原工業試驗研究

林路 曾加慶 李雙江 吳偉 王建忠 李慧峰 汪成義 張飛

林路, 曾加慶, 李雙江, 吳偉, 王建忠, 李慧峰, 汪成義, 張飛. 轉爐錳礦熔融還原工業試驗研究[J]. 工程科學學報, 2022, 44(9): 1575-1584. doi: 10.13374/j.issn2095-9389.2022.01.10.001
引用本文: 林路, 曾加慶, 李雙江, 吳偉, 王建忠, 李慧峰, 汪成義, 張飛. 轉爐錳礦熔融還原工業試驗研究[J]. 工程科學學報, 2022, 44(9): 1575-1584. doi: 10.13374/j.issn2095-9389.2022.01.10.001
LIN Lu, ZENG Jia-qing, LI Shuang-jiang, WU Wei, WANG Jian-zhong, LI Hui-feng, WANG Cheng-yi, ZHANG Fei. Industrial test of smelting reduction for manganese ore in converter[J]. Chinese Journal of Engineering, 2022, 44(9): 1575-1584. doi: 10.13374/j.issn2095-9389.2022.01.10.001
Citation: LIN Lu, ZENG Jia-qing, LI Shuang-jiang, WU Wei, WANG Jian-zhong, LI Hui-feng, WANG Cheng-yi, ZHANG Fei. Industrial test of smelting reduction for manganese ore in converter[J]. Chinese Journal of Engineering, 2022, 44(9): 1575-1584. doi: 10.13374/j.issn2095-9389.2022.01.10.001

轉爐錳礦熔融還原工業試驗研究

doi: 10.13374/j.issn2095-9389.2022.01.10.001
基金項目: 國家重點研發計劃專項資助項目(2017YFB0304000);國家自然科學基金資助項目(51704080,51874102,52074093);北京自然科學基金資助項目(2222040)
詳細信息
    通訊作者:

    E-mail: zengjiaqing@vip.sina.com

  • 中圖分類號: TF713

Industrial test of smelting reduction for manganese ore in converter

More Information
  • 摘要: 為打通轉爐煉鋼過程錳礦熔融還原技術路徑,提高錳的收得率,對錳礦熔融還原過程和提高錳收得率的工藝參數進行了熱力學探討,并在某鋼廠200 t轉爐上開展了工業試驗研究。研究結果表明:高效穩定的鐵水“三脫”預處理技術是錳礦熔融還原技術成功的基本前提;通過理論計算,在爐渣中的(MnO)質量分數為5%~10%,終點[C]質量分數控制在0.13%~0.36%時,終點鋼液[Mn]質量分數可控制在0.3%以上。工業試驗主要通過采用雙渣法冶煉操作,在確保前期鐵水低磷的條件下盡可能控制少渣量、降低爐渣中氧化鐵,從而實現加入錳礦后提高錳收得率;并在現有工藝控制條件下,錳礦加入10 kg·t?1以內時,工業試驗可使錳礦還原過程錳收得率超過40%,平均為51.40%;為進一步提高錳收得率,建議嚴格將錳礦熔融還原渣料總量控制在40~60 kg·t?以內,石灰加入量控制在10~15 kg·t?1以內;研究結果為錳礦熔融還原技術的開發和應用提供重要參考。

     

  • 圖  1  試驗用錳礦XRD物相分析. (a)高品位錳礦;(b)低品位錳礦

    Figure  1.  XRD phase analysis of the manganese ore used in the experiment: (a) high grade manganese ore; (b) low grade manganese ore

    圖  2  試驗用錳礦巖相照片。(a)高品位錳礦;(b)低品位錳礦

    Figure  2.  Lithofacies photos of the manganese ore used in the experiment: (a) high grade manganese ore; (b) low grade manganese ore

    圖  3  煉鋼溫度下$\Delta_{{\rm{r}}}G^{\ominus}- T $

    Figure  3.  $\Delta_{{\rm{r}}}G^{\ominus}- T $ diagram at steelmaking temperature

    圖  4  終點碳含量和錳含量的平衡關系

    Figure  4.  Equilibrium relationship between end-point carbon content and manganese content

    圖  5  渣中(FeO)和終點錳含量的平衡關系

    Figure  5.  Equilibrium relationship between end-point manganese content and (FeO) in slag

    圖  6  不同錳礦加入量下終點碳含量和錳含量的平衡關系

    Figure  6.  Equilibrium relationship between end-point carbon content and manganese content under different amounts of manganese ore input

    圖  7  不同錳礦品位時各試驗爐次錳收得率

    Figure  7.  Manganese recovery ratio of different manganese ore grades

    圖  8  轉爐前期脫磷率與轉爐終點錳收得率之間的關系

    Figure  8.  Relationship between the dephosphorization ratio of the early process in the converter and the manganese recovery ratio of end-point

    圖  9  轉爐終點碳含量對錳收得率的影響

    Figure  9.  Effects of the end-point carbon content of converter on the recovery ratio of manganese

    圖  10  轉爐終點碳含量對錳分配比的影響

    Figure  10.  Effects of the end-point carbon content on manganese distribution ratio in the converter

    圖  11  渣量對錳收得率的影響

    Figure  11.  Effects of slag amount on the recovery ratio of manganese

    圖  12  典型爐次爐渣的礦相組成. (a)堿度為3.10;(b)堿度為3.28

    Figure  12.  Typical mineral phase composition of slag: (a)basicity is 3.10; (b) basicity is 3.28

    表  1  國內外鋼鐵廠轉爐錳礦熔融還原工藝(國內僅限于工業試驗)[14-21]

    Table  1.   Smelting reduction of manganese ore in converter worldwide (industrial test in domestic) [14-21]

    Steel plantYearConverter capacity/
    t
    Manganese ore addition/
    (kg?t?1)
    Total manganese mass fraction in manganese ore/%End point carbon mass fraction/
    %
    Alloying processManganese yield/
    %
    Fukuyama198725015–2054.40.1Hot metal triple stripping + less slag smelting65–70
    Kobe19901001049.20.2570
    Keihin199025010470.2065
    Oita199234012–1343.20.1470–80
    Pansteel19881204–617.44Traditional smelting process of converter20
    Shanggang No.5 plant1992152220.330
    Laiwu Steel20011204270.1123
    Jinan Steel20022510300.136
    Tangshan Steel2004306–10240.0713–27
    WISCO20101004–4.3420.09730
    Linyi steel pipe20121204420.11925–35
    Xingtai Steel20145020150.08426.1
    Guofeng Steel20141205320.0613
    Fushun Xingang20154510.1612.680.0648
    Baosteel20023005–8.7350.05Hot metal triple stripping + less slag smelting50–67
    Baosteel20053005–15350.05Hot metal triple stripping + duplex process70
    WISCO201310–2048.240.04~0.05Desulfurization of hot metal + double slag process35–45
    下載: 導出CSV

    表  2  某鋼廠試驗鋼種82B化學成分(質量分數)

    Table  2.   Chemical composition of 82B from a steel plant %

    Steel gradeCSiMnPSCrV
    SWRH82B-L0.79–0.860.15–0.350.60–0.90$\leqslant$0.025$\leqslant$0.0250.15–0.350.040–0.060
    Target value0.82–0.820.200.80$\leqslant$0.020$\leqslant$0.0100.250.050
    Internal control value0.74–0.810.18–0.220.72–0.78$\leqslant$0.020$\leqslant$0.0100.23–0.270.048–0.052
    下載: 導出CSV

    表  3  研究試驗方案

    Table  3.   Test plan of the experiments

    No.Manganese ore typeManganese ore scheme addition/
    (kg·t?1)
    Actual addition amount
    of manganese ore/
    t
    Actual addition amount of manganese ore/
    (kg·t?1)
    Remarks
    1-1High-grade manganese ore7.515487.7Effect of manganese ore addition on manganese yield
    1-21019749.4
    1-315292914.1
    2-1Low-grade manganese ore510004.9Effect of manganese ore addition on manganese yield
    2-29974.9
    2-310435.4
    2-410485.3
    2-510505.3
    2-67.516257.7
    2-716548.0
    2-810204810.6
    2-912.5255413.4
    2-1015254714.1
    2-1120406920.3
    下載: 導出CSV

    表  4  試驗用錳礦的化學成分(質量分數)

    Table  4.   Chemical composition of the manganese ore for the industrial test                       %

    NameT.MnSiO2T.FeSP
    High-grade manganese ore4810.868.310.0040.0038
    Low-grade manganese ore358.464.670.0340.0019
    下載: 導出CSV

    表  5  鐵水條件和鋼水終點情況

    Table  5.   Molten iron condition and terminal condition of molten steel

    No.Hot metal conditionEnd-point conditionManganese yield/%
    w[P]/%T/℃w[C]/%w[Mn]/%w[P]/%w[S]/%T/℃
    1-10.11713030.160.190.0150.017159440.61
    1-20.11412580.160.2110.01440.016159749.10
    1-30.14612700.140.210.0180.015162032.43
    2-10.13213510.200.130.0140.011158046.77
    2-20.1312480.110.1340.01710.014159448.13
    2-30.13812890.160.20.0170.013158779.30
    2-40.14412770.160.180.0140.011159548.39
    2-50.13712800.180.120.0110.014157537.67
    2-60.1312520.210.2070.01810.009158060.99
    2-70.12413050.140.2180.01710.014160460.01
    2-80.14112660.150.210.0140.01158843.04
    2-90.13612790.120.200.0150.016161029.85
    2-100.1312930.110.180.0110.013158626.26
    2-110.14612640.120.220.0150.014156923.95
    下載: 導出CSV

    表  6  轉爐終點爐渣成分

    Table  6.   Composition of converter terminal slag

    No.Composition of converter final slagSlag basicity
    wCaO/%$w_{ {\rm{Si} }{\rm{O} }_{2} }$/%wMgO/%wT.Fe/%w$w_{ {\rm{P} }_{2}{\rm{O} }_{5} }$/%wMn/%$w_{{\rm{Al} }_{2}{\rm{O} }_{3}}$/%
    1-142.4710.946.7919.732.665.841.223.88
    1-245.0911.127.8114.482.688.011.714.05
    1-3The final slag sample was not obtained
    2-143.6914.655.929.123.103.671.53.10
    2-241.2013.315.0213.532.974.711.354.84
    2-349.2510.178.8814.762.614.881.114.57
    2-448.5810.628.0115.982.654.631.134.13
    2-546.7211.3010.8814.962.854.401.103.28
    2-643.3613.234.7611.653.124.801.383.25
    2-743.2313.314.7211.503.124.791.384.05
    2-845.7111.298.0616.442.866.361.113.68
    2-946.5812.667.5414.452.886.341.004.19
    2-1043.4410.367.3518.762.177.231.023.88
    2-11The final slag sample was not obtained
    下載: 導出CSV

    表  7  爐渣物相質量分數和堿度

    Table  7.   Slag phase mass fraction and slag basicity

    No.Mass fraction of each phase, %Slag basicity
    C3SC2SROC2Ff-CaO
    a35-4030-355-105-103-53.10
    b35-4020-2510-1510-153-53.28
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu W, Gao Q, Zhang B, et al. Reaction kinetics during direct alloying of manganese ore cored wire. J Iron Steel Res Int, 2020, 27(3): 282 doi: 10.1007/s42243-020-00363-7
    [2] Dai S F, Wu W, Zhang X D, et al. Analysis of manganese balance between slag and steel at end-point of BOF. China Metall, 2017, 27(1): 12

    戴詩凡, 吳偉, 張曦東, 等. 轉爐終點渣鋼間錳平衡狀況分析. 中國冶金, 2017, 27(1):12
    [3] Fu J T, Hu S C. Experimental study on a refractory low-grade ferromanganese ore. Multipurp Util Miner Resour, 2021(3): 158 doi: 10.3969/j.issn.1000-6532.2021.03.025

    付金濤, 胡生操. 某難選高鐵高磷錳礦石同步還原分離實驗研究. 礦產綜合利用, 2021(3):158 doi: 10.3969/j.issn.1000-6532.2021.03.025
    [4] Wang F. Experimental study on processing of high-grade manganse oxide ore by coal-based reduction roasting. Min Metall Eng, 2021, 41(2): 80 doi: 10.3969/j.issn.0253-6099.2021.02.019

    王鈁. 煤基還原焙燒法處理高品位氧化錳礦試驗研究. 礦冶工程, 2021, 41(2):80 doi: 10.3969/j.issn.0253-6099.2021.02.019
    [5] Wu X Y, Fu X L. Benefit analysis of replacing manganese ore with waste manganese slag in converter. Chinas Manganese Ind, 1988, 6(5): 32

    伍先冶, 付先良. 用廢錳渣取代錳礦用于轉爐煉鋼的效益分析. 中國錳業, 1988, 6(5):32
    [6] Pang J M, Pan C C, Ma Y N, et al. Experimental study on preparation of manganese-containing pig iron from low-grade manganese ore by microwave smelting. China Nonferrous Metall, 2020, 49(3): 83

    龐建明, 潘聰超, 馬永寧, 等. 微波冶煉低品位錳礦制備含錳生鐵的試驗研究. 中國有色冶金, 2020, 49(3):83
    [7] Gao Q, Pang J M, Ma Y N, et al. Study on preparation of high carbon ferromanganese from carbon-bearing manganese ore pellets with microwave heating. Nonferrous Met Extr Metall, 2019(3): 15

    高琦, 龐建明, 馬永寧, 等. 微波加熱含碳錳礦球團冶煉高碳錳鐵的研究. 有色金屬(冶煉部分), 2019(3):15
    [8] Wan J Y, Chen T J, Zhou X L, et al. Research on the direct reduction test with high manganese iron ore to fortify red mud. Sinter Pelletizing, 2020, 45(6): 10

    萬軍營, 陳鐵軍, 周仙霖, 等. 高錳鐵礦強化赤泥直接還原試驗研究. 燒結球團, 2020, 45(6):10
    [9] Zhang B, Liu L, Li C X, et al. Current research and countermeasures of direct alloying of manganese ore in BOF. J Hunan Univ Technol, 2018, 32(5): 50 doi: 10.3969/j.issn.1673-9833.2018.05.009

    張波, 劉浪, 李春曉, 等. 轉爐錳礦直接合金化國內外現狀及對策. 湖南工業大學學報, 2018, 32(5):50 doi: 10.3969/j.issn.1673-9833.2018.05.009
    [10] Matsuo M, Saito C, Katayama H, et al. Smelting reduction of iron ore with top-and-bottom blowing converter. Tetsu-to-Hagane, 1990, 76(11): 1871 doi: 10.2355/tetsutohagane1955.76.11_1871
    [11] Kaneko T, Matsuzaki T, Kugimiya T, et al. Improvement of Mn yield in less slag blowing at BOF by use of sintered manganese ore. Tetsu-to-Hagane, 1993, 79(8): 941 doi: 10.2355/tetsutohagane1955.79.8_941
    [12] Yamase O, Ikeda M, Fukumi J, et al. Industrialization of a new steelmaking process utilizing hot metal pretreatment and smelting reduction. Tetsu-to-Hagane, 1988, 74(2): 270 doi: 10.2355/tetsutohagane1955.74.2_270
    [13] Kawasaki S, Hirahashi H, Aoki M, et al. Improvement of the refining process around combined blowing converter in Kobe works. Tetsu-to-Hagane, 1990, 76(11): 1900 doi: 10.2355/tetsutohagane1955.76.11_1900
    [14] Tabata Y, Terada O, Hasegawa T, et al. Manganese partition equilibrium in less slag blowing at BOF linked to high speed dephosphorization of hot metal. Tetsu-to-Hagane, 1990, 76(11): 1916 doi: 10.2355/tetsutohagane1955.76.11_1916
    [15] Zhang H J, Shen G, Wang X Z, et al. Trials on the application of poor manganese ore to the converter in steel refining. Steelmaking, 1992, 8(2): 50

    張懷珺, 沈鋼, 王緒贊, 等. 貧錳礦在轉爐冶煉中應用的試驗研究. 煉鋼, 1992, 8(2):50
    [16] Meng Z L, Yang X Y, Wang Y C. Discussion on manganese ore alloying. Shandong Metall, 2003, 25(Suppl 2): 111

    孟召來, 楊西銀, 王玉春. 錳礦合金化探討. 山東冶金, 2003, 25(增刊2): 111
    [17] Xie Z K, Liu H B, Dai H Y, et al. Application of melting reduction technique of manganese ore in 25t converter at Jigang. Shandong Metall, 2002, 24(6): 36 doi: 10.3969/j.issn.1004-4620.2002.06.015

    謝中堃, 劉洪波, 戴輝永, 等. 錳礦石熔融還原技術在濟鋼25t轉爐上的應用. 山東冶金, 2002, 24(6):36 doi: 10.3969/j.issn.1004-4620.2002.06.015
    [18] Li R S, Feng R M, Wei G Z, et al. Application of poor manganese ore in converter steel-making process. Steelmaking, 2004, 20(1): 13 doi: 10.3969/j.issn.1002-1043.2004.01.004

    李榮生, 馮潤明, 魏國增, 等. 貧錳礦在轉爐煉鋼工藝中的應用. 煉鋼, 2004, 20(1):13 doi: 10.3969/j.issn.1002-1043.2004.01.004
    [19] Zhao Z F, Li X M, Shen J S. Experimental study on increase of end-point manganese by addition of manganese ore in converter. Steelmaking, 2010, 26(1): 40

    趙中福, 李小明, 沈繼勝. 轉爐煉鋼加錳礦提高終點錳含量的試驗研究. 煉鋼, 2010, 26(1):40
    [20] Yang C X, Li P C, Lu Z J, et al. Residual manganese content in molten steel of end-point of BOF and its influencing factors. China Metall, 2012, 22(11): 42

    楊傳信, 李鵬超, 盧昭軍, 等. 轉爐終點鋼水殘錳質量分數及其影響因素分析. 中國冶金, 2012, 22(11):42
    [21] Ji D D, Wang Q K, Li F W, et al. Production practice of reductive alloying for using manganese ore // Seminar on Common Technology of Low Cost Steelmaking 2014. Nanjing, 2014: 227

    姬旦旦, 王秋坤, 李富偉, 等. 轉爐使用錳礦直接還原合金化的生產實踐 // 2014年低成本煉鋼共性技術研討會. 南京, 2014:227
    [22] Qiao Z, Zhang L M, Qiao L Y. Industrial test to increase end manganese content of converter with manganese ore. Hebei Metall, 2014(12): 19 doi: 10.13630/j.cnki.13-1172.2014.1205

    喬崢, 張利民, 喬立巖. 利用錳礦提高轉爐終點錳含量的工業試驗. 河北冶金, 2014(12):19 doi: 10.13630/j.cnki.13-1172.2014.1205
    [23] Wen Y C, Zhao H L, Gong M X, et al. Kinetics on direct alloying in steelmaking by using manganese pellets. J Univ Sci Technol Beijing, 1999(5): 428 doi: 10.3321/j.issn:1001-053X.1999.05.004

    文永才, 趙海雷, 公茂秀, 等. 煉鋼用錳球團礦直接合金化動力學. 北京科技大學學報, 1999(5):428 doi: 10.3321/j.issn:1001-053X.1999.05.004
    [24] Dai S F, Wu W, Ma D, et al. Experiment on improving transfer of MnO in slag to molten steel. Iron Steel, 2017, 52(8): 35 doi: 10.13228/j.boyuan.issn0449-749x.20160551

    戴詩凡, 吳偉, 馬登, 等. 提高爐渣中MnO向鋼中傳遞的試驗. 鋼鐵, 2017, 52(8):35 doi: 10.13228/j.boyuan.issn0449-749x.20160551
    [25] Wu W, Dai S F, Wang P, et al. Equilibrium kinetics of manganese-ore carbon-reduction between molten steel and slag. Ironmak Steelmak, 2019, 46(5): 469 doi: 10.1080/03019233.2017.1405149
    [26] Huang X H. Ferrous Metallurgy Theory. 3nd Ed. Beijing: Metallurgical Industry Press, 2002

    黃希祜. 鋼鐵冶金原理. 3版. 北京: 冶金工業出版社, 2002
  • 加載中
圖(12) / 表(7)
計量
  • 文章訪問數:  2124
  • HTML全文瀏覽量:  200
  • PDF下載量:  44
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-10
  • 網絡出版日期:  2022-04-02
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回