-
摘要: 連續鑄鋼工藝的成功與保護渣的正確使用密不可分,但保護渣在結晶器內發生的氟化物揮發、卷渣、控熱與潤滑的矛盾又制約了綠色和高效連鑄的發展。重慶大學通過對保護渣在結晶器內進行物理化學研究,發現保護渣中以鋁為代表的網絡形成中間體元素具有適應結晶器工況環境的功效。這些功效包括:(1)抑制保護渣與水之間離子交換程度,起到固氟和固鈉的作用;(2)形成異類網絡結構,使熔渣產生明顯的剪切稀化行為,實現保護渣不同位置黏度大小控制;(3)在低堿度條件下表現出獨特的熱擴散效應,促使玻璃渣膜變成晶體渣膜。在此基礎上,提出連鑄結晶器“自適應保護渣”設計理論,利用這一理論開發出環境友好、非牛頓流體及熱擴散效應保護渣。工業應用結果表明這類保護渣無需降氟就可達到環境友好、降低超低碳鋼冷軋板封鎖率及提升304D高氮不銹鋼板坯表面質量的效果。Abstract: The success of the continuous casting process is inseparable from the correct use of mold powders. However, fluoride volatilization and the contradiction between slag entrapment, heat transfer, and lubrication that occurs in the mold restrict the development of green and efficient continuous casting. Through the physical and chemical research of mold powders, Chongqing University found that the intermediate elements of network formation represented by aluminum in the mold powders have remarkable effects of adapting to the working environment of the mold. These effects include: (1) These elements inhibit the degree of ion exchange between the slag and the water and fix fluorine and sodium. (2) They also form a heterogeneous network structure such that the slag produces shear and thinning behaviors and realizes slag viscosity control in different positions. (3) Under the condition of low basicity, aluminum shows a unique thermal diffusion effect, which promotes the transformation of glass slag film to a crystal slag film. On this basis, the design theory of “Smart Mold Powders” for continuous casting, which is referred to as the “SMP” theory, is proposed. This theory was used to develop environmentally friendly non-Newtonian fluids and thermal diffusion effects to mold powders. Industrial application results show that this type of mold powders can achieve environmental friendliness without fluoride reduction, minimize the rejecting ratio of cold-rolled plates, and improve the surface quality of slabs for high-nitrogen stainless steel.
-
Key words:
- continuous casting /
- mold powders /
- adaptive /
- intermediate /
- Soret effect
-
表 1 渣樣失重量(質量分數)
Table 1. Weight loss of the slags
% Samples Chemical compositions Losses (1000–1400 ℃) CaO SiO2 CaF2 Na2O 1# 35.0 35.0 15.0 15.0 4.57 2# 42.5 42.5 15.0 0.46 表 2 保護渣主要化學成分
Table 2. Main chemical compositions of mold powders
Samples Basicity Chemical composition (Mass fraction)% CaO/SiO2 Al2O3 Na2O+F 1# 0.76 7.50 16.0 2# 0.76 0 16.0 www.77susu.com -
參考文獻
[1] Mills K C, Fox A B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479 [2] Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367 [3] Yang J, Wang L, Wang Q, et al. Challenges in the mold flux design: Development of F-free fluxes and fluxes for casting of high-Al steel. Steel Res Int, 2022, 93(3): 2100123 doi: 10.1002/srin.202100123 [4] Carli R. Design and manufacturing of mold fluxes-business model changing over 50 years of history // 5th International Congress on the Science and Technology of Steelmaking. Dresden, 2012: 1 [5] Sarkar R, Li Z S. Isothermal and non-isothermal crystallization kinetics of mold fluxes used in continuous casting of steel: A review. Metall Mater Trans B, 2021, 52(3): 1357 doi: 10.1007/s11663-021-02099-5 [6] Chilov A. Mass Spectrometric Study of Volatile Components in Mould Powders [Dissertation]. Espoo: Helsinki University of Technology, 2005 [7] Supradist M, Cramb A W, Schwerdtfeger K. Combustion of carbon in casting powder in a temperature gradient. ISIJ Int, 2004, 44(5): 817 doi: 10.2355/isijinternational.44.817 [8] Mills K C. Structure and properties of slags used in the continuous casting of steel: Part 2 specialist mould powders. ISIJ Int, 2016, 56(1): 14 doi: 10.2355/isijinternational.ISIJINT-2015-355 [9] Gu S P, Yu L, Wen G H et al. Qualitative, quantitative and mechanism research of volatiles in the most commonly used CaO–SiO2–CaF2–Na2O slag during casting process. Trans Indian Inst Met, 2021, 74(4): 775 doi: 10.1007/s12666-021-02184-y [10] Shilov A, Holappa L. Mass spectrometric measurements of the gas phase composition over mould powder samples in vacuum conditions at 50–1550 °C. Steel Res Int, 2006, 77(11): 803 doi: 10.1002/srin.200606465 [11] Gao J X, Wen G H, Tang P, et al. Effects of Al2O3 on the leaching of fluorine in mold fluxes. Chin J Eng, 2015, 37(5): 573高金星, 文光華, 唐萍, 等. Al2O3對連鑄保護渣中氟浸出的影響. 工程科學學報, 2015, 37(5):573 [12] Gao J X. Fundamental Research on the Component, Structure and Properties of Mold Fluxes Containing Al2O3 and CaF2 [Dissertation]. Chongqing: Chongqing University, 2016高金星. 含Al2O3和CaF2連鑄結晶器保護渣成分、結構和性能的基礎研究[學位論文]. 重慶: 重慶大學, 2016 [13] Watanabe K, Tsutsumi K, Suzuki M, et al. Development of new mold flux for continuous casting based on non-Newtonian fluid properties. ISIJ Int, 2014, 54(4): 865 doi: 10.2355/isijinternational.54.865 [14] Shin S H, Yoon D W, Cho J W, et al. Controlling shear thinning property of lime silica based mold flux system with borate additive at 1623 K. J Non Cryst Solids, 2015, 425: 83 doi: 10.1016/j.jnoncrysol.2015.05.032 [15] Gu S P, Wen G H, Guo J L, et al. Effect of Al2O3 on non-Newtonian property and its relation to structure of mold fluxes during shear stress field at 1573 K. J Non Cryst Solids, 2020, 547: 120312 doi: 10.1016/j.jnoncrysol.2020.120312 [16] Yoon D W, Cho J W, Kim S H. Controlling radiative heat transfer across the mold flux layer by the scattering effect of the borosilicate mold flux system with metallic iron. Metall Mater Trans B, 2017, 48(4): 1951 doi: 10.1007/s11663-017-0975-z [17] Kromhout J A. Mold Powders for High Speed Continuous Casting of Steel [Dissertation]. Delft: Delft University of Technology, 2011 [18] Zhu D, Luo T Y, Song X Y, et al. Advances in research on soret effects in petrogenesis and metallogenesis of mafic-ultramafic rocks. Acta Mineral Sin, 2007, 27(Suppl 1): 265朱丹, 羅泰義, 宋謝炎, 等. 基性−超基性巖漿成巖和成礦過程中Soret效應的研究進展. 礦物學報, 2007, 27(增刊1): 265 [19] Chang A F, Ding X. Thermodiffusion driven element and isotope fractionations: A remarkable differentiation mechanism in silicate systems. Acta Petrol Sin, 2020, 36(1): 99 doi: 10.18654/1000-0569/2020.01.11常翱飛, 丁興. 熱擴散驅動的元素分異和同位素分餾: 一種不容忽視的硅酸鹽成分分異機制. 巖石學報, 2020, 36(1):99 doi: 10.18654/1000-0569/2020.01.11 [20] Lesher C E, Walker D. Solution properties of silicate liquids from thermal diffusion experiments. Geochimica Cosmochimica Acta, 1986, 50(7): 1397 doi: 10.1016/0016-7037(86)90313-3 [21] Lesher C E. Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies. J Geophys Res Solid Earth, 1986, 91(B6): 6123 doi: 10.1029/JB091iB06p06123 [22] Mills K C. Structure and properties of slags used in the continuous casting of steel: Part 1 Conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231 [23] Wen G H, Yang C L, Tang P. Research overview of formation and heat transfer of slag film in mold during continuous casting. Chin J Eng, 2019, 41(1): 12文光華, 楊昌霖, 唐萍. 連鑄結晶器內渣膜形成及傳熱的研究現狀. 工程科學學報, 2019, 41(1):12 [24] Gao J X, Wen G H, Huang T, et al. Effect of Al speciation on the structure of high-Al steels mold fluxes containing fluoride. J Am Ceram Soc, 2016, 99(12): 3941 doi: 10.1111/jace.14444 [25] Gao J X, Wen G H, Liu Q, et al. Effect of Al2O3 on the fluoride volatilization during melting and ion release in water of mold flux. J Non Cryst Solids, 2015, 409: 8 doi: 10.1016/j.jnoncrysol.2014.11.014 [26] Fu X J. Fundamental Research and Application of Mold Fluxes for Casting High-Al TRIP Steel [Dissertation]. Chongqing: Chongqing University, 2014付孝錦. 高鋁TRIP鋼連鑄結晶器保護渣基礎研究及應用實踐[學位論文]. 重慶: 重慶大學, 2014 [27] Gu S P. Effect of Shear Stress on Viscosity, Crystallization and Heat Transfer Behaviors of Continuous Casting Mold Fluxes [Dissertation]. Chongqing: Chongqing University, 2021谷少鵬. 剪切力對連鑄保護渣粘度、結晶及傳熱性能的影響研究[學位論文]. 重慶: 重慶大學, 2021 [28] Yang C L. Simulation Study on Heat Transfer and Formation of Slag Film during Solidification of Mold Flux Used for Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018楊昌霖. 連鑄結晶器保護渣凝固傳熱及渣膜形成的模擬研究[學位論文]. 重慶: 重慶大學, 2018 -