<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

連鑄結晶器“自適應保護渣”理論及應用

文光華 陳富杭 蔣文波 侯自兵 唐萍

文光華, 陳富杭, 蔣文波, 侯自兵, 唐萍. 連鑄結晶器“自適應保護渣”理論及應用[J]. 工程科學學報, 2022, 44(9): 1558-1565. doi: 10.13374/j.issn2095-9389.2022.01.04.002
引用本文: 文光華, 陳富杭, 蔣文波, 侯自兵, 唐萍. 連鑄結晶器“自適應保護渣”理論及應用[J]. 工程科學學報, 2022, 44(9): 1558-1565. doi: 10.13374/j.issn2095-9389.2022.01.04.002
WEN Guang-hua, CHEN Fu-hang, JIANG Wen-bo, HOU Zi-bing, TANG Ping. Theory and application of “smart mold powders” for continuous casting of steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1558-1565. doi: 10.13374/j.issn2095-9389.2022.01.04.002
Citation: WEN Guang-hua, CHEN Fu-hang, JIANG Wen-bo, HOU Zi-bing, TANG Ping. Theory and application of “smart mold powders” for continuous casting of steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1558-1565. doi: 10.13374/j.issn2095-9389.2022.01.04.002

連鑄結晶器“自適應保護渣”理論及應用

doi: 10.13374/j.issn2095-9389.2022.01.04.002
基金項目: 國家自然科學基金資助項目(51274260, 51574050)
詳細信息
    通訊作者:

    E-mail:wengh@cqu.edu.cn

  • 中圖分類號: TF777.1

Theory and application of “smart mold powders” for continuous casting of steel

More Information
  • 摘要: 連續鑄鋼工藝的成功與保護渣的正確使用密不可分,但保護渣在結晶器內發生的氟化物揮發、卷渣、控熱與潤滑的矛盾又制約了綠色和高效連鑄的發展。重慶大學通過對保護渣在結晶器內進行物理化學研究,發現保護渣中以鋁為代表的網絡形成中間體元素具有適應結晶器工況環境的功效。這些功效包括:(1)抑制保護渣與水之間離子交換程度,起到固氟和固鈉的作用;(2)形成異類網絡結構,使熔渣產生明顯的剪切稀化行為,實現保護渣不同位置黏度大小控制;(3)在低堿度條件下表現出獨特的熱擴散效應,促使玻璃渣膜變成晶體渣膜。在此基礎上,提出連鑄結晶器“自適應保護渣”設計理論,利用這一理論開發出環境友好、非牛頓流體及熱擴散效應保護渣。工業應用結果表明這類保護渣無需降氟就可達到環境友好、降低超低碳鋼冷軋板封鎖率及提升304D高氮不銹鋼板坯表面質量的效果。

     

  • 圖  1  保護渣中氣體分壓隨溫度變化[6]

    Figure  1.  Partial vapor pressures over mold powders with temperature [6]

    圖  2  含Al2O3保護渣離子交換示意圖

    Figure  2.  Ion exchange mechanism for mold slag with Al2O3

    圖  3  連鑄過程非牛頓流體保護渣概念示意圖[13]

    Figure  3.  Mold flux concept for non-Newtonian fluid in a continuous casting process[13]

    圖  4  剪切力對與鋁相關單元結構進化示意圖. (a) Q2Si (1Al); (b) Q3Si (1Al)

    Figure  4.  Structural evolution for the Al-related species at high shear rate: (a) Q2 Si (1Al); (b) Q3 Si (1Al)

    圖  5  含鋁保護渣. (a) 雙絲法; (b) 圖5(a)中選定區域所對應的微觀結構; (c) X衍射

    Figure  5.  Slag with Al2O3: (a) DHTT; (b) microstructure corresponding to the selected area in Fig.5(a); (c) XRD

    圖  6  不含鋁保護渣. (a) 雙絲法; (b) 圖6(a)中選定區域所對應的微觀結構

    Figure  6.  Al2O3-free slag: (a) DHTT; (b) microstructure corresponding to the selected area in Fig.6(a)

    圖  7  含鋁保護渣. (a) 拉曼光譜; (b) 核磁共振

    Figure  7.  Slag with Al2O3: (a) Raman spectrum; (b) nuclear magnetic resonance

    圖  8  保護渣中Al2O3含量對水樣中F?和pH的影響. (a) F?; (b) pH

    Figure  8.  Effects of Al2O3 content on F? and pH of leaching water: (a) F?; (b) pH

    圖  9  Al2O3對保護渣剪切稀化性能的影響. (a) 黏度η; (b) 流動行為指數n

    Figure  9.  Effect of Al2O3 on shear-thinning performance of slag: (a) viscosity η; (b) flow behavior index n

    圖  10  含鋁低堿度保護渣. (a) 渣膜斷面形貌; (b) 圖10(a)中選定區域所對應的微觀結構

    Figure  10.  Low basicity slag with Al2O3: (a) section morphology of slag film; (b) microstructure corresponding to the selected area in Fig.10(a)

    圖  11  含鋁低堿度保護渣黏度?溫度曲線

    Figure  11.  Viscosity–temperature curve of low basicity slag with Al2O3

    表  1  渣樣失重量(質量分數)

    Table  1.   Weight loss of the slags %

    SamplesChemical compositionsLosses (1000–1400 ℃)
    CaOSiO2CaF2Na2O
    1#35.035.015.015.04.57
    2#42.542.515.00.46
    下載: 導出CSV

    表  2  保護渣主要化學成分

    Table  2.   Main chemical compositions of mold powders

    SamplesBasicityChemical composition (Mass fraction)%
    CaO/SiO2Al2O3Na2O+F
    1#0.767.5016.0
    2#0.76016.0
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mills K C, Fox A B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
    [2] Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367
    [3] Yang J, Wang L, Wang Q, et al. Challenges in the mold flux design: Development of F-free fluxes and fluxes for casting of high-Al steel. Steel Res Int, 2022, 93(3): 2100123 doi: 10.1002/srin.202100123
    [4] Carli R. Design and manufacturing of mold fluxes-business model changing over 50 years of history // 5th International Congress on the Science and Technology of Steelmaking. Dresden, 2012: 1
    [5] Sarkar R, Li Z S. Isothermal and non-isothermal crystallization kinetics of mold fluxes used in continuous casting of steel: A review. Metall Mater Trans B, 2021, 52(3): 1357 doi: 10.1007/s11663-021-02099-5
    [6] Chilov A. Mass Spectrometric Study of Volatile Components in Mould Powders [Dissertation]. Espoo: Helsinki University of Technology, 2005
    [7] Supradist M, Cramb A W, Schwerdtfeger K. Combustion of carbon in casting powder in a temperature gradient. ISIJ Int, 2004, 44(5): 817 doi: 10.2355/isijinternational.44.817
    [8] Mills K C. Structure and properties of slags used in the continuous casting of steel: Part 2 specialist mould powders. ISIJ Int, 2016, 56(1): 14 doi: 10.2355/isijinternational.ISIJINT-2015-355
    [9] Gu S P, Yu L, Wen G H et al. Qualitative, quantitative and mechanism research of volatiles in the most commonly used CaO–SiO2–CaF2–Na2O slag during casting process. Trans Indian Inst Met, 2021, 74(4): 775 doi: 10.1007/s12666-021-02184-y
    [10] Shilov A, Holappa L. Mass spectrometric measurements of the gas phase composition over mould powder samples in vacuum conditions at 50–1550 °C. Steel Res Int, 2006, 77(11): 803 doi: 10.1002/srin.200606465
    [11] Gao J X, Wen G H, Tang P, et al. Effects of Al2O3 on the leaching of fluorine in mold fluxes. Chin J Eng, 2015, 37(5): 573

    高金星, 文光華, 唐萍, 等. Al2O3對連鑄保護渣中氟浸出的影響. 工程科學學報, 2015, 37(5):573
    [12] Gao J X. Fundamental Research on the Component, Structure and Properties of Mold Fluxes Containing Al2O3 and CaF2 [Dissertation]. Chongqing: Chongqing University, 2016

    高金星. 含Al2O3和CaF2連鑄結晶器保護渣成分、結構和性能的基礎研究[學位論文]. 重慶: 重慶大學, 2016
    [13] Watanabe K, Tsutsumi K, Suzuki M, et al. Development of new mold flux for continuous casting based on non-Newtonian fluid properties. ISIJ Int, 2014, 54(4): 865 doi: 10.2355/isijinternational.54.865
    [14] Shin S H, Yoon D W, Cho J W, et al. Controlling shear thinning property of lime silica based mold flux system with borate additive at 1623 K. J Non Cryst Solids, 2015, 425: 83 doi: 10.1016/j.jnoncrysol.2015.05.032
    [15] Gu S P, Wen G H, Guo J L, et al. Effect of Al2O3 on non-Newtonian property and its relation to structure of mold fluxes during shear stress field at 1573 K. J Non Cryst Solids, 2020, 547: 120312 doi: 10.1016/j.jnoncrysol.2020.120312
    [16] Yoon D W, Cho J W, Kim S H. Controlling radiative heat transfer across the mold flux layer by the scattering effect of the borosilicate mold flux system with metallic iron. Metall Mater Trans B, 2017, 48(4): 1951 doi: 10.1007/s11663-017-0975-z
    [17] Kromhout J A. Mold Powders for High Speed Continuous Casting of Steel [Dissertation]. Delft: Delft University of Technology, 2011
    [18] Zhu D, Luo T Y, Song X Y, et al. Advances in research on soret effects in petrogenesis and metallogenesis of mafic-ultramafic rocks. Acta Mineral Sin, 2007, 27(Suppl 1): 265

    朱丹, 羅泰義, 宋謝炎, 等. 基性−超基性巖漿成巖和成礦過程中Soret效應的研究進展. 礦物學報, 2007, 27(增刊1): 265
    [19] Chang A F, Ding X. Thermodiffusion driven element and isotope fractionations: A remarkable differentiation mechanism in silicate systems. Acta Petrol Sin, 2020, 36(1): 99 doi: 10.18654/1000-0569/2020.01.11

    常翱飛, 丁興. 熱擴散驅動的元素分異和同位素分餾: 一種不容忽視的硅酸鹽成分分異機制. 巖石學報, 2020, 36(1):99 doi: 10.18654/1000-0569/2020.01.11
    [20] Lesher C E, Walker D. Solution properties of silicate liquids from thermal diffusion experiments. Geochimica Cosmochimica Acta, 1986, 50(7): 1397 doi: 10.1016/0016-7037(86)90313-3
    [21] Lesher C E. Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies. J Geophys Res Solid Earth, 1986, 91(B6): 6123 doi: 10.1029/JB091iB06p06123
    [22] Mills K C. Structure and properties of slags used in the continuous casting of steel: Part 1 Conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231
    [23] Wen G H, Yang C L, Tang P. Research overview of formation and heat transfer of slag film in mold during continuous casting. Chin J Eng, 2019, 41(1): 12

    文光華, 楊昌霖, 唐萍. 連鑄結晶器內渣膜形成及傳熱的研究現狀. 工程科學學報, 2019, 41(1):12
    [24] Gao J X, Wen G H, Huang T, et al. Effect of Al speciation on the structure of high-Al steels mold fluxes containing fluoride. J Am Ceram Soc, 2016, 99(12): 3941 doi: 10.1111/jace.14444
    [25] Gao J X, Wen G H, Liu Q, et al. Effect of Al2O3 on the fluoride volatilization during melting and ion release in water of mold flux. J Non Cryst Solids, 2015, 409: 8 doi: 10.1016/j.jnoncrysol.2014.11.014
    [26] Fu X J. Fundamental Research and Application of Mold Fluxes for Casting High-Al TRIP Steel [Dissertation]. Chongqing: Chongqing University, 2014

    付孝錦. 高鋁TRIP鋼連鑄結晶器保護渣基礎研究及應用實踐[學位論文]. 重慶: 重慶大學, 2014
    [27] Gu S P. Effect of Shear Stress on Viscosity, Crystallization and Heat Transfer Behaviors of Continuous Casting Mold Fluxes [Dissertation]. Chongqing: Chongqing University, 2021

    谷少鵬. 剪切力對連鑄保護渣粘度、結晶及傳熱性能的影響研究[學位論文]. 重慶: 重慶大學, 2021
    [28] Yang C L. Simulation Study on Heat Transfer and Formation of Slag Film during Solidification of Mold Flux Used for Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018

    楊昌霖. 連鑄結晶器保護渣凝固傳熱及渣膜形成的模擬研究[學位論文]. 重慶: 重慶大學, 2018
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  2289
  • HTML全文瀏覽量:  176
  • PDF下載量:  87
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-04
  • 網絡出版日期:  2022-03-15
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回