[1] |
Rincon L, Puri M, Kojakovic A, et al. The contribution of sustainable bioenergy to renewable electricity generation in Turkey: Evidence based policy from an integrated energy and agriculture approach. Energy Policy, 2019, 130: 69 doi: 10.1016/j.enpol.2019.03.024
|
[2] |
Calt E. Products from organic waste using managed ecosystem fermentation. J Sustainable Dev, 2015, 8(3): 43
|
[3] |
Zhang C S, Yang L, Liu Y, et al. Advances of biocaproate production from cost-effective substrates via anaerobic fermentation. J Chem Eng Chin Univ, 2021, 35(2): 215 doi: 10.3969/j.issn.1003-9015.2021.02.003張存勝, 楊莉, 劉巖, 等. 廉價廢棄物厭氧發酵制備生物己酸技術進展. 高校化學工程學報, 2021, 35(2):215 doi: 10.3969/j.issn.1003-9015.2021.02.003
|
[4] |
Wu Q L, Guo W Q, Bao X, et al. Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest. Water Res, 2018, 145: 650 doi: 10.1016/j.watres.2018.08.046
|
[5] |
Zhu X Y, Tao Y, Liang C, et al. The synthesis of n-caproate from lactate: A new efficient process for medium-chain carboxylates production. Sci Rep, 2015, 5: 14360 doi: 10.1038/srep14360
|
[6] |
Liu C M. Caproate Production in Two-Phase Anaerobic Fermentation and Its Microbiological Process [Dissertation]. Wuxi: Jiangnan University, 2018劉春梅. 兩相法厭氧發酵產己酸及其微生物學研究[學位論文]. 無錫: 江南大學, 2018
|
[7] |
Wu Q L, Jiang Y, Chen Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. Bioresour Technol, 2021, 340: 125633 doi: 10.1016/j.biortech.2021.125633
|
[8] |
Wu F, Jiang H, Li Y Q. Advancements in producing medium chain carboxylic acids via anaerobic digestion. Environ Eng, 2021, 39(8): 150 doi: 10.13205/j.hjgc.202108021吳凡, 江皓, 李葉青. 利用厭氧發酵技術合成中鏈羧酸的研究進展. 環境工程, 2021, 39(8):150 doi: 10.13205/j.hjgc.202108021
|
[9] |
Zhu W B, Gao M, Yin Z H, et al. Research progress on caproic acid production from organic waste by anaerobic fermentation. Environ Eng, 2020, 38(1): 128 doi: 10.13205/j.hjgc.202001020朱文彬, 高明, 陰紫荷, 等. 有機廢物厭氧發酵生物合成己酸研究進展. 環境工程, 2020, 38(1):128 doi: 10.13205/j.hjgc.202001020
|
[10] |
Lubner C E, Jennings D P, Mulder D W, et al. Mechanistic insights into energy conservation by flavin-based electron bifurcation. Nat Chem Biol, 2017, 13(6): 655 doi: 10.1038/nchembio.2348
|
[11] |
Kucek L A, Nguyen M, Angenent L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome. Water Res, 2016, 93: 163 doi: 10.1016/j.watres.2016.02.018
|
[12] |
Prabhu R, Altman E, Eiteman M A. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol, 2012, 78(24): 8564 doi: 10.1128/AEM.02443-12
|
[13] |
Spirito C M, Richter H, Rabaey K, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol, 2014, 27: 115 doi: 10.1016/j.copbio.2014.01.003
|
[14] |
Buckel W, Thauer R K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (ech) or NAD + (rnf) as electron acceptors: A historical review. Front Microbiol, 2018, 9: 401 doi: 10.3389/fmicb.2018.00401
|
[15] |
Wu Q L, Feng X C, Guo W Q, et al. Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation. Chem Eng J, 2020, 388: 124218 doi: 10.1016/j.cej.2020.124218
|
[16] |
Roghair M, Hoogstad T, Strik D P B T B, et al. Controlling ethanol use in chain elongation by CO2 loading rate. Environ Sci Technol, 2018, 52(3): 1496 doi: 10.1021/acs.est.7b04904
|
[17] |
Yin Y N, Zhang Y F, Karakashev D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources. Bioresour Technol, 2017, 241: 638 doi: 10.1016/j.biortech.2017.05.184
|
[18] |
Angenent L T, Richter H, Buckel W, et al. Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals. Environ Sci Technol, 2016, 50(6): 2796 doi: 10.1021/acs.est.5b04847
|
[19] |
Herrmann G, Jayamani E, Mai G, et al. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol, 2008, 190(3): 784 doi: 10.1128/JB.01422-07
|
[20] |
Buckel W. Unusual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol, 2001, 57(3): 263 doi: 10.1007/s002530100773
|
[21] |
Buckel W, Thauer R K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta, 2013, 1827(2): 94 doi: 10.1016/j.bbabio.2012.07.002
|
[22] |
Thauer R K, Jungermann K, Rupprecht E, et al. Hydrogen formation from NADH in cell-free extracts of Clostridium kluyveri. FEBS Lett, 1969, 4(2): 108 doi: 10.1016/0014-5793(69)80208-5
|
[23] |
Kaplan N O, Kennedy E P. Current Aspects of Biochemical Energetics. Fritz Lipmann Dedicatory Volume. New York: Academic Press, 1966
|
[24] |
Seedorf H, Fricke W F, Veith B, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA, 2008, 105(6): 2128 doi: 10.1073/pnas.0711093105
|
[25] |
Müller V, Chowdhury N P, Basen M. Electron bifurcation: A long-hidden energy-coupling mechanism. Annu Rev Microbiol, 2018, 72: 331 doi: 10.1146/annurev-micro-090816-093440
|
[26] |
Weghoff M C, Bertsch J, Müller V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol, 2015, 17(3): 670 doi: 10.1111/1462-2920.12493
|
[27] |
Kenealy W R, Waselefsky D M. Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate. Arch Microbiol, 1985, 141(3): 187 doi: 10.1007/BF00408056
|
[28] |
Barker H A, Taha S M. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol, 1942, 43(3): 347 doi: 10.1128/jb.43.3.347-363.1942
|
[29] |
Weimer P J, Stevenson D M. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol, 2012, 94(2): 461 doi: 10.1007/s00253-011-3751-z
|
[30] |
San-Valero P, Abubackar H N, Veiga M C, et al. Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresour Technol, 2020, 300: 122659 doi: 10.1016/j.biortech.2019.122659
|
[31] |
Zhang C S, Yang L, Huo S H, et al. Optimization of the cell immobilization-based chain-elongation process for efficient n-caproate production. ACS Sustain Chem Eng, 2021, 9(11): 4014 doi: 10.1021/acssuschemeng.0c07281
|
[32] |
Wu Q L, Guo W Q, You S J, et al. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply. Bioresour Technol, 2019, 291: 121573 doi: 10.1016/j.biortech.2019.121573
|
[33] |
Yu J N, Huang Z X, Wu P, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia. Bioresour Technol, 2019, 284: 398 doi: 10.1016/j.biortech.2019.03.124
|
[34] |
Ge S J, Usack J G, Spirito C M, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environ Sci Technol, 2015, 49(13): 8012 doi: 10.1021/acs.est.5b00238
|
[35] |
Grootscholten T I M, Strik D P B T B, Steinbusch K J J, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Appl Energy, 2014, 116: 223 doi: 10.1016/j.apenergy.2013.11.061
|
[36] |
Cavalcante W D A, Leit?o R C, Gehring T A, et al. Anaerobic fermentation for n-caproic acid production: A review. Process Biochem, 2017, 54: 106 doi: 10.1016/j.procbio.2016.12.024
|
[37] |
Vasudevan D, Richter H, Angenent L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour Technol, 2014, 151: 378 doi: 10.1016/j.biortech.2013.09.105
|
[38] |
Crognale S, Braguglia C M, Gallipoli A, et al. Direct conversion of food waste extract into caproate: Metagenomics assessment of chain elongation process. Microorganisms, 2021, 9(2): 327 doi: 10.3390/microorganisms9020327
|
[39] |
Wang K, Yin J, Shen D S, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour Technol, 2014, 161: 395 doi: 10.1016/j.biortech.2014.03.088
|
[40] |
Zhu X Y, Zhou Y, Wang Y, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels, 2017, 10: 102 doi: 10.1186/s13068-017-0788-y
|
[41] |
Candry P, Radi? L, Favere J, et al. Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. Water Res, 2020, 186: 116396 doi: 10.1016/j.watres.2020.116396
|
[42] |
Lewis V P, Yang S T. Propionic acid fermentation by Propionibacterium acidipropionici: Effect of growth substrate. Appl Microbiol Biotechnol, 1992, 37(4): 437
|
[43] |
Xie S B, Ma J W, Li L, et al. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode. Bioresour Technol, 2021, 329: 124893 doi: 10.1016/j.biortech.2021.124893
|
[44] |
Nzeteu C O, Trego A C, Abram F, et al. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnol Biofuels, 2018, 11: 108 doi: 10.1186/s13068-018-1101-4
|
[45] |
Gao M, Lin Y J, Wang P, et al. Production of medium-chain fatty acid caproate from Chinese liquor distillers’ grain using pit mud as the fermentation microbes. J Hazard Mater, 2021, 417: 126037 doi: 10.1016/j.jhazmat.2021.126037
|
[46] |
Venkateswar Reddy M, Kumar G, Mohanakrishna G, et al. Review on the production of medium and small chain fatty acids through waste valorization and CO2 fixation. Bioresour Technol, 2020, 309: 123400 doi: 10.1016/j.biortech.2020.123400
|
[47] |
Tomlinson N, Barker H A. Carbon dioxide and acetate utilization by clostridium kluyveri: I. Influence of nutritional conditions on utilization patterns. J Biol Chem, 1954, 209(2): 585
|
[48] |
Kleerebezem R, Loosdrecht M C M V. A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol, 2010, 40(1): 1 doi: 10.1080/10643380802000974
|
[49] |
Demler M, Weuster-Botz D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng, 2011, 108(2): 470 doi: 10.1002/bit.22935
|
[50] |
Stams A J M. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek, 1994, 66(1): 271
|
[51] |
González-Cabaleiro R, Lema J M, Rodríguez J, et al. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci, 2013, 6(12): 3780 doi: 10.1039/c3ee42754d
|
[52] |
González-Tenorio D, Mu?oz-Páez K M, Buitrón G, et al. Fermentation of organic wastes and CO2+H2 off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. J CO2 Util, 2020, 42: 101314 doi: 10.1016/j.jcou.2020.101314
|
[53] |
Rabaey K, Rozendal R A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat Rev Microbiol, 2010, 8(10): 706 doi: 10.1038/nrmicro2422
|
[54] |
Eerten-Jansen M C A A, Ter Heijne A, Grootscholten T I M, et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustainable Chem Eng, 2013, 1(5): 513 doi: 10.1021/sc300168z
|
[55] |
Andersen S J, Candry P, Basadre T, et al. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. Biotechnol Biofuels, 2015, 8: 221 doi: 10.1186/s13068-015-0396-7
|
[56] |
Jiang Y, Chu N, Zhang W, et al. Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode. Energy Convers Manag, 2020, 204: 112285 doi: 10.1016/j.enconman.2019.112285
|
[57] |
Cheng S L, Liu Z H, Varrone C, et al. Elucidating the microbial ecological mechanisms on the electro-fermentation of caproate production from acetate via ethanol-driven chain elongation. Environ Res, 2022, 203: 111875 doi: 10.1016/j.envres.2021.111875
|
[58] |
Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol, 2009, 43(10): 3953 doi: 10.1021/es803531g
|
[59] |
Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 2010, 1(2): e00103?10
|
[60] |
Raes S M T, Jourdin L, Buisman C J N, et al. Continuous long-term bioelectrochemical chain elongation to butyrate. ChemElectroChem, 2017, 4(2): 386 doi: 10.1002/celc.201600587
|
[61] |
Chu N, Hao W, Wu Q L, et al. Microbial electrosynthesis for producing medium chain fatty acids. Engineering,https://doi.org/10.1016/j.eng.2021.03.025
|
[62] |
Igor V, Hernandez P A, Pau B V, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng, 2018, 6(7): 8485 doi: 10.1021/acssuschemeng.8b00739
|
[63] |
Jiang Y, Chu N, Qian D K, et al. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide. Bioresour Technol, 2020, 295: 122266 doi: 10.1016/j.biortech.2019.122266
|
[64] |
Chu N, Jiang Y, Zeng J X. Principle and research progress in microbial electrosynthesis of medium-chain fatty acids. Biotechnol Bull, 2021, 37(5): 237 doi: 10.13560/j.cnki.biotech.bull.1985.2020-1054褚娜, 蔣永, 曾建雄. 微生物電合成生產中鏈脂肪酸的基本原理及研究進展. 生物技術通報, 2021, 37(5):237 doi: 10.13560/j.cnki.biotech.bull.1985.2020-1054
|
[65] |
Jiang Y, Chu N, Zhang W, et al. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Res, 2019, 159: 87 doi: 10.1016/j.watres.2019.04.053
|
[66] |
Dhanya B S, Mishra A, Chandel A K, et al. Development of sustainable approaches for converting the organic waste to bioenergy. Sci Total Environ, 2020, 723: 138109 doi: 10.1016/j.scitotenv.2020.138109
|