Flight alternate optimization scheme in dangerous weather based on multiexpectation
-
摘要: 空中多次備降極易導致低油量等不安全事件發生。針對區域內多航班集體備降這一問題,選取其中最復雜情況,即航路或終端區存在雷暴天氣,首先通過搜集和統計氣象數據與歷史航跡,得到雷暴天氣下飛行限制區的劃設標準;然后,將前往備降場方式分為機動飛行與沿航路飛行兩類,分別使用A*與改進灰狼?Dijkstra方法開展改航路徑規劃;先以備降航班飛行總時長最短為單目標,再綜合飛行、管制、機場、航空公司等多方期望構建多目標函數,定義動態決策時間間隔,提出一種基于單目標與多目標的區域內多航班備降動態優化方案;最后,使用“8.12”華北運行數據開展仿真驗證,在單目標與多目標方案中,面向機動飛行A*算法所得結果分別將飛行總時長減少了100 min和62 min,而面向按照航路飛行的改進灰狼?Dijkstra算法所得總時長分別減少73 min和14 min;并且,在多目標方案中,航班恢復飛往原目的地的時間整體提前了63 min,總成本降低了6.29萬元。以上說明,該方案在保證航班備降安全基礎上,可兼顧多方需求,提升經濟與效率。Abstract: Aircraft landing with low fuel is usually caused by diversion decision changes in the air. It could lead to an unsafe event. To solve the problem of collective alternate landings of multiple flights in the area, the most complex situation is selected, that is, when the weather in the route or terminal area is dangerous. However, in this situation, when the pilot announces diversion, many are unacceptable by the airport due to limited aircraft stand. Therefore, this study establishes a decision-making approach to help air traffic controllers and airlines choose suitable alternate airports since accurate fly limit zone conditions can keep the aircraft out of dangerous weather and a short diversion route can avoid the low fuel situation, both of which can increase the safety of the diversion process. The basic conditions of the fly limit zone under dangerous weather are obtained by combining meteorological data and historic tracks. Here, A* and the improved gray wolf Dijkstra algorithm are used to plan the diversion path for two different routes to the alternate aerodrome: maneuvering flight and flying along the route. First, considering the shortest total flight time of alternate flight as the single objective and subsequently integrating the expectations of flight, control, airport, and airline, a multi-objective function is constructed, the dynamic decision-making time interval is defined, and a dynamic optimization scheme of multi-flight alternate in the region based on a single objective and multi-objective is proposed. The single-objective scheme focuses on the safe aspect of diversion, while the multi-objective scheme focuses on preventing airport rejection. The multi-objective scheme can enable the flight to land quickly, ensure safety, and consider the expectations of multiple parties to avoid diverting simultaneously. Using the “8.12” North China large area alternate landing data, the total flight time obtained by selecting the direct flight A* algorithm is reduced by 100 and 62 min, respectively, and the total flight time obtained by the improved gray wolf Dijkstra algorithm based on the route is reduced by 73 and 14 min. Moreover, in the multi-objective scheme, the overall time of flight resumption to the original destination is 63 min earlier, and the total cost is reduced by 62900 yuan. Although multiple diversion still occurs on CA991, the process is within the safety range. Therefore, results indicate that the scheme considers the needs of multiple parties and improves the economy to ensure the safety of flight alternate landing.
-
表 1 飛越航班的氣象數據統計
Table 1. Meteorological data statistics of overflights
Reflectivity /dBZ Number of overflights VIL: 0 kg·m?3 VIL: 1–4 kg·m?3 VIL: 5–7 kg·m?3 VIL: >7 kg·m?3 10–15 0 7 0 0 16–20 16 18 0 0 21–25 10 20 0 0 26–30 4 27 0 0 31–35 28 67 0 0 36–40 13 11 4 0 41–45 3 9 1 0 ≥46 0 0 0 1 表 2 航班個例分析
Table 2. Meteorological data analyzation cases
Flight Time Reflectivity /dBZ VIL /(kg·m?3) Observatory CZ6408 16:30 41–45 1–4 Tang Gu 16:36 36–40 1–4 G52819 7:30 36–40 5–7 Pu Yang 7:36 26–30 1–4 7:42 26–30 0 表 3 飛越航班驗證結果
Table 3. Meteorological data validation results
Reflectivity /
dBZNumber of flights VIL: 0 kg·m?3 VIL: 1–4 kg·m?3 VIL: 5–7 kg·m?3 VIL: >7 kg·m?3 21–25 4 6 0 0 26–30 5 10 0 0 31–35 11 51 0 0 36–40 9 8 1 0 41–45 3 4 0 0 ≥46 0 0 0 0 表 4 備降優化決策結果. (a) 決策過程與備降時間變化; (b) 整體結果
Table 4. Flight alternate decision result: (a) decision process and time change; (b) total result (a)
Times of decision Flight Actual result Single-objective decision scheme Multi-objective decision scheme A* result Time change /
minImproved gray wolf result Time change / min A* result Time change / min Improved gray wolf result Time change / min First
decisionCA1288 ZBTJ ZBTJ 0 ZBTJ 0 ZBTJ 0 ZBTJ 0 Second
decisionCA1290 ZYTX ZYTX 0 ZYTX 0 ZYTX 0 ZYTX 0 CA1238 ZBHH ZBHH 0 ZBHH 0 ZBHH 0 ZBHH 0 CA991 ZYTX ZYTX 0 ZYTX 0 ZBHH — ZBHH — CA8312 ZYTX ZBHH ?33 ZBHH ?27 ZBHH +11 ZBHH ?27 CA4115 ZYTX ZBHH ?30 ZBHH ?23 ZBHH ?30 ZBHH ?23 CA1150 ZBHH ZBHH ?53 ZBHH ?51 ZBHH ?53 ZBHH ?51 Third
decisionCA1290 ZYTX ZYTX 0 ZYTX 0 ZYTX 0 ZYTX 0 CA1238 ZBHH ZBHH 0 ZBHH 0 ZBHH 0 ZBHH 0 CA991 ZYTX ZYTX 0 ZYTX 0 ZYTX +24 ZYTX +42 CA8312 ZYTX ZBHH ZBHH ZYTX ZBHH CA4115 ZYTX ZBHH ZBHH ZBHH ZBHH CA8346 ZBHH ZBHH 0 ZBHH 0 ZBHH 0 ZBHH 0 CA4135 ZBHH ZSJN +16 ZSJN +37 ZBHH ?14 ZYTX +44 HU7794 ZSJN ZSJN 0 ZSJN 0 ZSJN 0 ZSJN 0 Note:Time change in the chart “+” means increase,” ?” means decrease. Table . (b)
Scheme of flight alternate decision Total diversion time / min Total diversion cost/ (104 ¥) Total flight recovery time /min Actual result 451 78.29 2644 Single-objective decision scheme A* result 351 66.27 2718 Improved gray wolf result 378 68.91 2661 Multi-objective decision scheme A* result 389 69.40 2642 Improved gray wolf result 437 72.00 2579 www.77susu.com -
參考文獻
[1] Zhang Y, Hansen M. Real-time intermodal substitution: Strategy for airline recovery from schedule perturbation and for mitigation of airport congestion. Transportation Res Record, 2008, 2052(1): 90 doi: 10.3141/2052-11 [2] Mukherjee A, Hansen M. A dynamic rerouting model for air traffic flow management. Transp Res B Methodol, 2009, 43(1): 159 doi: 10.1016/j.trb.2008.05.011 [3] Yoon Y, Hansen M, Ball M O. Optimal route decision with a geometric ground-airborne hybrid model under weather uncertainty. Transp Res E Logist Transp Rev, 2012, 48(1): 34 doi: 10.1016/j.tre.2011.05.005 [4] di Ciccio C, van der Aa H, Cabanillas C, et al. Detecting flight trajectory anomalies and predicting diversions in freight transportation. Decis Support Syst, 2016, 88: 1 doi: 10.1016/j.dss.2016.05.004 [5] Ryerson M S. Diversion ahead: Modeling the factors driving diversion airport choice. J Infrastruct Syst, 2018, 24(1): 04017039 doi: 10.1061/(ASCE)IS.1943-555X.0000407 [6] Malandri C, Mantecchini L, Paganelli F, et al. Impacts of unplanned aircraft diversions on airport ground operations. Transp Res Procedia, 2020, 47: 537 doi: 10.1016/j.trpro.2020.03.129 [7] ?pák M, Olexa P. Enhancement of the diversion airport selection methodology. Transp Res Procedia, 2020, 51: 232 doi: 10.1016/j.trpro.2020.11.026 [8] Li X, Xu X H, Zhao Y F, et al. Flight rerouting path planning in dispersedly distributed severe weather areas. Acta Aeronaut Astronaut Sin, 2009, 30(12): 2342 doi: 10.3321/j.issn:1000-6893.2009.12.016李雄, 徐肖豪, 趙嶷飛, 等. 散點狀分布危險天氣區域下的航班改航路徑規劃. 航空學報, 2009, 30(12):2342 doi: 10.3321/j.issn:1000-6893.2009.12.016 [9] Wang F, Wang H Y. A re-routing path planning method based on maklink graph and GA algorithm. J Transp Syst Eng Inf Technol, 2014, 14(5): 154 doi: 10.3969/j.issn.1009-6744.2014.05.023王飛, 王紅勇. 基于Maklink圖和遺傳算法的改航路徑規劃方法研究. 交通運輸系統工程與信息, 2014, 14(5):154 doi: 10.3969/j.issn.1009-6744.2014.05.023 [10] Chen Z M, Lin Y, Yang B. Study on algorithm for rerouting based on historical data. Adv Eng Sci, 2018, 50(4): 110陳正茂, 林毅, 楊波. 基于歷史數據的空中改航算法研究. 工程科學與技術, 2018, 50(4):110 [11] Chen K J, Chen L L. Aircraft holding and rerouting real-time integrated optimization under adverse weather. J Nanjing Univ Aeronaut Astronaut, 2019, 51(6): 763 doi: 10.16356/j.1005-2615.2019.06.005陳可嘉, 陳琳琳. 危險天氣下航班等待與改航的實時集成優化. 南京航空航天大學學報, 2019, 51(6):763 doi: 10.16356/j.1005-2615.2019.06.005 [12] Chen Y T, Hu M H, Yang L, et al. Autonomous trajectory planning and conflict management technology in restricted airspace. Acta Aeronaut Astronaut Sin, 2020, 41(9): 324045陳雨童, 胡明華, 楊磊, 等. 受限航路空域自主航跡規劃與沖突管理技術. 航空學報, 2020, 41(9):324045 [13] Zang N N, Chi H, Shao X Y, et al. The search model on the high frequent risk subsets of the diversion or turning back flights. Oper Res Manag Sci, 2012, 21(3): 105 doi: 10.3969/j.issn.1007-3221.2012.03.017臧寧寧, 池宏, 邵雪焱, 等. 返航備降航班高風險頻發子集搜索模型. 運籌與管理, 2012, 21(3):105 doi: 10.3969/j.issn.1007-3221.2012.03.017 [14] Zhao Y F, Shi Y L, Wang H Y. Research on the optimization model of flights alternate based on linear programming. Sci Technol Eng, 2013, 13(27): 8222 doi: 10.3969/j.issn.1671-1815.2013.27.057趙嶷飛, 石艷麗, 王紅勇. 基于線性規劃的航班備降優化模型研究. 科學技術與工程, 2013, 13(27):8222 doi: 10.3969/j.issn.1671-1815.2013.27.057 [15] Wang Y T, Tang J X, Zhao Y F. On the flight alternate optimization based on the adjustable apron. J Saf Environ, 2018, 18(2): 636 doi: 10.13637/j.issn.1009-6094.2018.02.041王巖韜, 唐建勛, 趙嶷飛. 基于機位可調整的航班空中備降優化. 安全與環境學報, 2018, 18(2):636 doi: 10.13637/j.issn.1009-6094.2018.02.041 [16] Liu P N, Gan X S, Tang X Q, et al. Research on repair problem of aviation network under airport failure based on modified WOA. Fire Control Command Control, 2021, 46(9): 88 doi: 10.3969/j.issn.1002-0640.2021.09.016劉蘋妮, 甘旭升, 唐雪琴, 等. 基于改進WOA的軍用機場失效下的備降場選擇策略. 火力與指揮控制, 2021, 46(9):88 doi: 10.3969/j.issn.1002-0640.2021.09.016 [17] Krozel J, Lee C, Mitchell J S B. Turn-constrained route planning for avoiding hazardous weather. Air Traffic Control Q, 2006, 14(2): 159 doi: 10.2514/atcq.14.2.159 [18] DeLaura R, Evans J. An exploratory study of modeling enroute pilot convective storm flight deviation behavior // 12th Conference on Aviation Range and Aerospace Meteorology. Lexington, 2006: 1 [19] He G Q, Lu L, Hu J Y, et al. Flight track change decision in thunderstorm based on least square method. Saf Environ Eng, 2019, 26(4): 171 doi: 10.13578/j.cnki.issn.1671-1556.2019.04.027何光勤, 魯力, 胡敬玉, 等. 基于最小二乘法的雷暴天氣下飛行改航決策研究. 安全與環境工程, 2019, 26(4):171 doi: 10.13578/j.cnki.issn.1671-1556.2019.04.027 [20] Yin L Y, Mei H, Zhang T F, et al. Environmental conditions and radar characteristics of a severe convective hailstorm with multiple supercells in central Yunnan Province. Meteorological Monthly, 2021, 47(4): 424 doi: 10.7519/j.issn.1000-0526.2021.04.004尹麗云, 梅寒, 張騰飛, 等. 云南中部一次出現多個超級單體雹暴的強對流過程環境場和雷達回波特征. 氣象, 2021, 47(4):424 doi: 10.7519/j.issn.1000-0526.2021.04.004 [21] Precup R E, David R C, Petriu E M. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans Ind Electron, 2017, 64(1): 527 doi: 10.1109/TIE.2016.2607698 [22] Liu E H, Yao X F, Liu M, et al. AGV path planning based on improved grey wolf optimization algorithm and its implementation prototype platform. Comput Integr Manuf Syst, 2018, 24(11): 2779 doi: 10.13196/j.cims.2018.11.013劉二輝, 姚錫凡, 劉敏, 等. 基于改進灰狼優化算法的自動導引小車路徑規劃及其實現原型平臺. 計算機集成制造系統, 2018, 24(11):2779 doi: 10.13196/j.cims.2018.11.013 [23] Tian W, Yang F, Yin J N, et al. Multi-objective optimization method of air route space-time resources allocation. J Traffic Transp Eng, 2020, 20(6): 218 doi: 10.19818/j.cnki.1671-1637.2020.06.019田文, 楊帆, 尹嘉男, 等. 航路時空資源分配的多目標優化方法. 交通運輸工程學報, 2020, 20(6):218 doi: 10.19818/j.cnki.1671-1637.2020.06.019 [24] Xu M, Huang P L, Yan Y, et al. Dynamic index based method for multi-objective optimization in aircraft conceptual design. J Beijing Univ Aeronaut Astronaut, 2014, 40(7): 965 doi: 10.13700/j.bh.1001-5965.2013.0447徐敏, 黃沛霖, 燕瑛, 等. 基于動態指標的飛機方案多目標優化方法. 北京航空航天大學學報, 2014, 40(7):965 doi: 10.13700/j.bh.1001-5965.2013.0447 [25] Li H, Guo X M, Hu X B. A calculation model for airlines’ weather-related costs under disastrous weather conditions. China Saf Sci J, 2019, 29(6): 7 doi: 10.16265/j.cnki.issn1003-3033.2019.06.002李航, 郭曉梅, 胡小兵. 災害性天氣下航空公司天氣成本測算模型. 中國安全科學學報, 2019, 29(6):7 doi: 10.16265/j.cnki.issn1003-3033.2019.06.002 -