<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

雷暴天氣下的多航班備降動態優化方案

王巖韜 劉錕 趙嶷飛

王巖韜, 劉錕, 趙嶷飛. 雷暴天氣下的多航班備降動態優化方案[J]. 工程科學學報, 2023, 45(4): 654-662. doi: 10.13374/j.issn2095-9389.2021.12.30.002
引用本文: 王巖韜, 劉錕, 趙嶷飛. 雷暴天氣下的多航班備降動態優化方案[J]. 工程科學學報, 2023, 45(4): 654-662. doi: 10.13374/j.issn2095-9389.2021.12.30.002
WANG Yan-tao, LIU Kun, ZHAO Yi-fei. Flight alternate optimization scheme in dangerous weather based on multiexpectation[J]. Chinese Journal of Engineering, 2023, 45(4): 654-662. doi: 10.13374/j.issn2095-9389.2021.12.30.002
Citation: WANG Yan-tao, LIU Kun, ZHAO Yi-fei. Flight alternate optimization scheme in dangerous weather based on multiexpectation[J]. Chinese Journal of Engineering, 2023, 45(4): 654-662. doi: 10.13374/j.issn2095-9389.2021.12.30.002

雷暴天氣下的多航班備降動態優化方案

doi: 10.13374/j.issn2095-9389.2021.12.30.002
基金項目: 國家自然科學基金資助項目(U1933103);國家重點研發課題(2022YFC3002502);天津市研究生科研創新項目(2021YJS061)
詳細信息
    通訊作者:

    E-mail: caucwyt@126.com

  • 中圖分類號: TP18;V355.2;U8;X949

Flight alternate optimization scheme in dangerous weather based on multiexpectation

More Information
  • 摘要: 空中多次備降極易導致低油量等不安全事件發生。針對區域內多航班集體備降這一問題,選取其中最復雜情況,即航路或終端區存在雷暴天氣,首先通過搜集和統計氣象數據與歷史航跡,得到雷暴天氣下飛行限制區的劃設標準;然后,將前往備降場方式分為機動飛行與沿航路飛行兩類,分別使用A*與改進灰狼?Dijkstra方法開展改航路徑規劃;先以備降航班飛行總時長最短為單目標,再綜合飛行、管制、機場、航空公司等多方期望構建多目標函數,定義動態決策時間間隔,提出一種基于單目標與多目標的區域內多航班備降動態優化方案;最后,使用“8.12”華北運行數據開展仿真驗證,在單目標與多目標方案中,面向機動飛行A*算法所得結果分別將飛行總時長減少了100 min和62 min,而面向按照航路飛行的改進灰狼?Dijkstra算法所得總時長分別減少73 min和14 min;并且,在多目標方案中,航班恢復飛往原目的地的時間整體提前了63 min,總成本降低了6.29萬元。以上說明,該方案在保證航班備降安全基礎上,可兼顧多方需求,提升經濟與效率。

     

  • 圖  1  備降優化實施方案流程圖

    Figure  1.  Alternate problem analysis

    圖  2  MU9882航班航線疊加氣象數據圖. (a) 16:18; (b) 17:18

    Figure  2.  Superimposed meteorological of MU9882 route: (a) 16:18; (b)17:18

    圖  3  迭代因子改進前后對比

    Figure  3.  Iteration factor before and after improvement

    圖  4  備降優化決策流程圖

    Figure  4.  Flight alternate decision process

    圖  5  CA1150實際航跡

    Figure  5.  CA1150 actual track

    圖  6  第三次決策的備降結果

    Figure  6.  Third decision result

    表  1  飛越航班的氣象數據統計

    Table  1.   Meteorological data statistics of overflights

    Reflectivity /dBZNumber of overflights
    VIL: 0 kg·m?3VIL: 1–4 kg·m?3VIL: 5–7 kg·m?3VIL: >7 kg·m?3
    10–150700
    16–20161800
    21–25102000
    26–3042700
    31–35286700
    36–40131140
    41–453910
    ≥460001
    下載: 導出CSV

    表  2  航班個例分析

    Table  2.   Meteorological data analyzation cases

    FlightTimeReflectivity /dBZVIL /(kg·m?3)Observatory
    CZ640816:3041–451–4Tang Gu
    16:3636–401–4
    G528197:3036–405–7Pu Yang
    7:3626–301–4
    7:4226–300
    下載: 導出CSV

    表  3  飛越航班驗證結果

    Table  3.   Meteorological data validation results

    Reflectivity /
    dBZ
    Number of flights
    VIL: 0 kg·m?3VIL: 1–4 kg·m?3VIL: 5–7 kg·m?3VIL: >7 kg·m?3
    21–254600
    26–3051000
    31–35115100
    36–409810
    41–453400
    ≥460000
    下載: 導出CSV

    表  4  備降優化決策結果. (a) 決策過程與備降時間變化; (b) 整體結果

    Table  4.   Flight alternate decision result: (a) decision process and time change; (b) total result (a)

    Times of decisionFlightActual resultSingle-objective decision schemeMulti-objective decision scheme
    A* resultTime change /
    min
    Improved gray wolf resultTime change / minA* resultTime change / minImproved gray wolf resultTime change / min
    First
    decision
    CA1288ZBTJZBTJ0ZBTJ0ZBTJ0ZBTJ0
    Second
    decision
    CA1290ZYTXZYTX0ZYTX0 ZYTX0ZYTX0
    CA1238ZBHHZBHH0ZBHH0ZBHH0ZBHH0
    CA991ZYTXZYTX0ZYTX0ZBHHZBHH
    CA8312ZYTXZBHH?33ZBHH?27ZBHH+11ZBHH?27
    CA4115ZYTXZBHH?30ZBHH?23ZBHH?30ZBHH?23
    CA1150ZBHHZBHH?53ZBHH?51ZBHH?53ZBHH?51
    Third
    decision
    CA1290ZYTXZYTX0ZYTX0ZYTX0ZYTX0
    CA1238ZBHHZBHH0ZBHH0ZBHH0ZBHH0
    CA991ZYTXZYTX0ZYTX0ZYTX+24ZYTX+42
    CA8312ZYTXZBHHZBHHZYTXZBHH
    CA4115ZYTXZBHHZBHHZBHHZBHH
    CA8346ZBHHZBHH0ZBHH0ZBHH0ZBHH0
    CA4135ZBHHZSJN+16ZSJN+37ZBHH?14ZYTX+44
    HU7794ZSJNZSJN0ZSJN0ZSJN0ZSJN0
    Note:Time change in the chart “+” means increase,” ?” means decrease.
    下載: 導出CSV

    Table  .   (b)

    Scheme of flight alternate decisionTotal diversion time / minTotal diversion cost/ (104 ¥)Total flight recovery time /min
    Actual result45178.292644
    Single-objective decision schemeA* result35166.272718
    Improved gray wolf result37868.912661
    Multi-objective decision schemeA* result38969.402642
    Improved gray wolf result43772.002579
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang Y, Hansen M. Real-time intermodal substitution: Strategy for airline recovery from schedule perturbation and for mitigation of airport congestion. Transportation Res Record, 2008, 2052(1): 90 doi: 10.3141/2052-11
    [2] Mukherjee A, Hansen M. A dynamic rerouting model for air traffic flow management. Transp Res B Methodol, 2009, 43(1): 159 doi: 10.1016/j.trb.2008.05.011
    [3] Yoon Y, Hansen M, Ball M O. Optimal route decision with a geometric ground-airborne hybrid model under weather uncertainty. Transp Res E Logist Transp Rev, 2012, 48(1): 34 doi: 10.1016/j.tre.2011.05.005
    [4] di Ciccio C, van der Aa H, Cabanillas C, et al. Detecting flight trajectory anomalies and predicting diversions in freight transportation. Decis Support Syst, 2016, 88: 1 doi: 10.1016/j.dss.2016.05.004
    [5] Ryerson M S. Diversion ahead: Modeling the factors driving diversion airport choice. J Infrastruct Syst, 2018, 24(1): 04017039 doi: 10.1061/(ASCE)IS.1943-555X.0000407
    [6] Malandri C, Mantecchini L, Paganelli F, et al. Impacts of unplanned aircraft diversions on airport ground operations. Transp Res Procedia, 2020, 47: 537 doi: 10.1016/j.trpro.2020.03.129
    [7] ?pák M, Olexa P. Enhancement of the diversion airport selection methodology. Transp Res Procedia, 2020, 51: 232 doi: 10.1016/j.trpro.2020.11.026
    [8] Li X, Xu X H, Zhao Y F, et al. Flight rerouting path planning in dispersedly distributed severe weather areas. Acta Aeronaut Astronaut Sin, 2009, 30(12): 2342 doi: 10.3321/j.issn:1000-6893.2009.12.016

    李雄, 徐肖豪, 趙嶷飛, 等. 散點狀分布危險天氣區域下的航班改航路徑規劃. 航空學報, 2009, 30(12):2342 doi: 10.3321/j.issn:1000-6893.2009.12.016
    [9] Wang F, Wang H Y. A re-routing path planning method based on maklink graph and GA algorithm. J Transp Syst Eng Inf Technol, 2014, 14(5): 154 doi: 10.3969/j.issn.1009-6744.2014.05.023

    王飛, 王紅勇. 基于Maklink圖和遺傳算法的改航路徑規劃方法研究. 交通運輸系統工程與信息, 2014, 14(5):154 doi: 10.3969/j.issn.1009-6744.2014.05.023
    [10] Chen Z M, Lin Y, Yang B. Study on algorithm for rerouting based on historical data. Adv Eng Sci, 2018, 50(4): 110

    陳正茂, 林毅, 楊波. 基于歷史數據的空中改航算法研究. 工程科學與技術, 2018, 50(4):110
    [11] Chen K J, Chen L L. Aircraft holding and rerouting real-time integrated optimization under adverse weather. J Nanjing Univ Aeronaut Astronaut, 2019, 51(6): 763 doi: 10.16356/j.1005-2615.2019.06.005

    陳可嘉, 陳琳琳. 危險天氣下航班等待與改航的實時集成優化. 南京航空航天大學學報, 2019, 51(6):763 doi: 10.16356/j.1005-2615.2019.06.005
    [12] Chen Y T, Hu M H, Yang L, et al. Autonomous trajectory planning and conflict management technology in restricted airspace. Acta Aeronaut Astronaut Sin, 2020, 41(9): 324045

    陳雨童, 胡明華, 楊磊, 等. 受限航路空域自主航跡規劃與沖突管理技術. 航空學報, 2020, 41(9):324045
    [13] Zang N N, Chi H, Shao X Y, et al. The search model on the high frequent risk subsets of the diversion or turning back flights. Oper Res Manag Sci, 2012, 21(3): 105 doi: 10.3969/j.issn.1007-3221.2012.03.017

    臧寧寧, 池宏, 邵雪焱, 等. 返航備降航班高風險頻發子集搜索模型. 運籌與管理, 2012, 21(3):105 doi: 10.3969/j.issn.1007-3221.2012.03.017
    [14] Zhao Y F, Shi Y L, Wang H Y. Research on the optimization model of flights alternate based on linear programming. Sci Technol Eng, 2013, 13(27): 8222 doi: 10.3969/j.issn.1671-1815.2013.27.057

    趙嶷飛, 石艷麗, 王紅勇. 基于線性規劃的航班備降優化模型研究. 科學技術與工程, 2013, 13(27):8222 doi: 10.3969/j.issn.1671-1815.2013.27.057
    [15] Wang Y T, Tang J X, Zhao Y F. On the flight alternate optimization based on the adjustable apron. J Saf Environ, 2018, 18(2): 636 doi: 10.13637/j.issn.1009-6094.2018.02.041

    王巖韜, 唐建勛, 趙嶷飛. 基于機位可調整的航班空中備降優化. 安全與環境學報, 2018, 18(2):636 doi: 10.13637/j.issn.1009-6094.2018.02.041
    [16] Liu P N, Gan X S, Tang X Q, et al. Research on repair problem of aviation network under airport failure based on modified WOA. Fire Control Command Control, 2021, 46(9): 88 doi: 10.3969/j.issn.1002-0640.2021.09.016

    劉蘋妮, 甘旭升, 唐雪琴, 等. 基于改進WOA的軍用機場失效下的備降場選擇策略. 火力與指揮控制, 2021, 46(9):88 doi: 10.3969/j.issn.1002-0640.2021.09.016
    [17] Krozel J, Lee C, Mitchell J S B. Turn-constrained route planning for avoiding hazardous weather. Air Traffic Control Q, 2006, 14(2): 159 doi: 10.2514/atcq.14.2.159
    [18] DeLaura R, Evans J. An exploratory study of modeling enroute pilot convective storm flight deviation behavior // 12th Conference on Aviation Range and Aerospace Meteorology. Lexington, 2006: 1
    [19] He G Q, Lu L, Hu J Y, et al. Flight track change decision in thunderstorm based on least square method. Saf Environ Eng, 2019, 26(4): 171 doi: 10.13578/j.cnki.issn.1671-1556.2019.04.027

    何光勤, 魯力, 胡敬玉, 等. 基于最小二乘法的雷暴天氣下飛行改航決策研究. 安全與環境工程, 2019, 26(4):171 doi: 10.13578/j.cnki.issn.1671-1556.2019.04.027
    [20] Yin L Y, Mei H, Zhang T F, et al. Environmental conditions and radar characteristics of a severe convective hailstorm with multiple supercells in central Yunnan Province. Meteorological Monthly, 2021, 47(4): 424 doi: 10.7519/j.issn.1000-0526.2021.04.004

    尹麗云, 梅寒, 張騰飛, 等. 云南中部一次出現多個超級單體雹暴的強對流過程環境場和雷達回波特征. 氣象, 2021, 47(4):424 doi: 10.7519/j.issn.1000-0526.2021.04.004
    [21] Precup R E, David R C, Petriu E M. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans Ind Electron, 2017, 64(1): 527 doi: 10.1109/TIE.2016.2607698
    [22] Liu E H, Yao X F, Liu M, et al. AGV path planning based on improved grey wolf optimization algorithm and its implementation prototype platform. Comput Integr Manuf Syst, 2018, 24(11): 2779 doi: 10.13196/j.cims.2018.11.013

    劉二輝, 姚錫凡, 劉敏, 等. 基于改進灰狼優化算法的自動導引小車路徑規劃及其實現原型平臺. 計算機集成制造系統, 2018, 24(11):2779 doi: 10.13196/j.cims.2018.11.013
    [23] Tian W, Yang F, Yin J N, et al. Multi-objective optimization method of air route space-time resources allocation. J Traffic Transp Eng, 2020, 20(6): 218 doi: 10.19818/j.cnki.1671-1637.2020.06.019

    田文, 楊帆, 尹嘉男, 等. 航路時空資源分配的多目標優化方法. 交通運輸工程學報, 2020, 20(6):218 doi: 10.19818/j.cnki.1671-1637.2020.06.019
    [24] Xu M, Huang P L, Yan Y, et al. Dynamic index based method for multi-objective optimization in aircraft conceptual design. J Beijing Univ Aeronaut Astronaut, 2014, 40(7): 965 doi: 10.13700/j.bh.1001-5965.2013.0447

    徐敏, 黃沛霖, 燕瑛, 等. 基于動態指標的飛機方案多目標優化方法. 北京航空航天大學學報, 2014, 40(7):965 doi: 10.13700/j.bh.1001-5965.2013.0447
    [25] Li H, Guo X M, Hu X B. A calculation model for airlines’ weather-related costs under disastrous weather conditions. China Saf Sci J, 2019, 29(6): 7 doi: 10.16265/j.cnki.issn1003-3033.2019.06.002

    李航, 郭曉梅, 胡小兵. 災害性天氣下航空公司天氣成本測算模型. 中國安全科學學報, 2019, 29(6):7 doi: 10.16265/j.cnki.issn1003-3033.2019.06.002
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數:  448
  • HTML全文瀏覽量:  157
  • PDF下載量:  75
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-30
  • 網絡出版日期:  2022-04-02
  • 刊出日期:  2023-04-01

目錄

    /

    返回文章
    返回