<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

微合金鋼薄板坯連鑄邊角裂紋控制

蔡兆鎮 朱苗勇

蔡兆鎮, 朱苗勇. 微合金鋼薄板坯連鑄邊角裂紋控制[J]. 工程科學學報, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001
引用本文: 蔡兆鎮, 朱苗勇. 微合金鋼薄板坯連鑄邊角裂紋控制[J]. 工程科學學報, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001
CAI Zhao-zhen, ZHU Miao-yong. Corner crack control for thin slab continuous casting of microalloyed steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001
Citation: CAI Zhao-zhen, ZHU Miao-yong. Corner crack control for thin slab continuous casting of microalloyed steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001

微合金鋼薄板坯連鑄邊角裂紋控制

doi: 10.13374/j.issn2095-9389.2021.12.30.001
基金項目: 國家自然科學基金資助項目(52174307, 51774075, 51404061);興遼計劃資助項目(XLYC1802032)
詳細信息
    作者簡介:

    蔡兆鎮,等。 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝。 中國冶金,2018,28(3):22)

    通訊作者:

    E-mail: myzhu@mail.neu.edu.cn

  • 中圖分類號: TF777.7

Corner crack control for thin slab continuous casting of microalloyed steel

More Information
  • 摘要: 微合金鋼薄板坯連鑄過程高發邊角部裂紋,致使熱軋卷板邊部產生翹皮、爛邊等質量缺陷,是鋼鐵行業的共性技術難題。本文立足于某鋼廠QStE380TM低碳含鈮鈦微合金鋼薄板坯連鑄生產,檢測分析了鑄坯角部組織金相結構與碳氮化物析出特點、不同冷卻與變形速率條件下鋼的斷面收縮率,并數值仿真研究了不同結構結晶器和二冷區鑄坯溫度與應力的演變規律。結果表明:微合金鋼薄板坯連鑄過程存在明顯的第三脆性區,且變形速率越大,第三脆性區越顯著。傳統薄板坯連鑄工藝條件下,結晶器的中上部及其出口至液芯壓下段的二冷高溫區,鑄坯角部冷速較低,致使其組織晶界含鈮鈦微合金碳氮化物呈鏈狀析出。鑄坯在液芯壓下過程,低塑性角部因受較大變形與應力作用而引發裂紋缺陷。實施沿高度方向有效補償坯殼凝固收縮的窄面高斯凹型曲面結晶器及其足輥區超強冷工藝,可分別提升鑄坯角部冷速至10和20 ℃·s?1以上,從而促使鑄坯角部組織碳氮化物彌散析出,并促進鑄坯窄面在液芯壓下過程金屬寬展流動而降低角部壓下應力,大幅降低了微合金鋼薄板坯邊角部裂紋發生率。

     

  • 圖  1  QStE380TM鋼薄板坯角部金相組織形貌. (a) 皮下5 mm; (b) 皮下10 mm

    Figure  1.  Morphologies of the microstructure of thin slab corner of QStE380TM: (a) 5 mm beneath the surface; (b) 10 mm beneath the surface

    圖  2  QStE380TM鋼薄板坯角部皮下5 mm處析出物的形貌與組成. (a) 析出物掃描; (b) 析出物能譜

    Figure  2.  Morphology of the precipitate of thin slab corner of QStE380TM at 5 mm beneath the surface: (a) precipitate graph of SEM; (b) EDS of the precipitate

    圖  3  不同變形速率條件下QStE380TM鋼斷面收縮率隨溫度變化. (a) 冷卻速率3.5 ℃·s?1; (b) 冷卻速率15.0 ℃·s?1

    Figure  3.  Variation of the reduction in the area of QStE380TM under different tensile rates: (a) 3.5 °C·s?1 cooling rate; (b) 15.0 °C·s?1 cooling rate

    圖  4  強冷卻控冷條件下的試樣金相與析出物透射形貌. (a) 金相組織; (b) 析出物透射形貌

    Figure  4.  Morphologies of the microstructure and distribution of precipitate of the thermal simulation sample under the hard cooling conditions: (a) microstructure; (b) precipitate

    圖  5  鑄坯角部區域的保護渣膜厚度分布. (a) 寬面; (b) 窄面

    Figure  5.  Distribution of mold flux film around slab corner: (a) wide face; (b) narrow face

    圖  6  鑄坯角部區域的氣隙分布. (a) 寬面; (b) 窄面

    Figure  6.  Distribution of air gap around slab corner: (a) wide face; (b) narrow face

    圖  7  鑄坯角部溫度與冷卻速度演變

    Figure  7.  Evolution of temperature and cooling rate of slab corner

    圖  8  QStE380TM鋼薄板坯連鑄過程表面溫度演變

    Figure  8.  Evolution of surface temperatures during thin slab continuous casting of QStE380TM

    圖  9  QStE380TM鋼薄板坯液芯壓下過程應力演變

    Figure  9.  Evolution of QStE380TM thin slab stress during liquid core reduction

    圖  10  高斯凹型曲面結晶器與窄面足輥強冷卻噴淋. (a) 高斯曲面結晶器示意圖; (b) 高斯曲面結晶器實物圖; (c)窄面足輥強冷卻噴淋

    Figure  10.  Gaussian concave surface mold and cooling structure for mold narrow face rollers: (a) schematic for Gaussian concave surface mold; (b) practical Gaussian concave surface mold; (c) practical cooling structure for mold narrow face rollers

    圖  11  新結晶器內鑄坯角部區域保護渣膜厚度分布. (a) 寬面; (b) 窄面

    Figure  11.  Distribution of mold flux film around slab corner in the new mold: (a) wide face; (b) narrow face

    圖  12  新結晶器內鑄坯角部氣隙分布. (a) 寬面; (b) 窄面

    Figure  12.  Distribution of air gap of slab corner in the new mold: (a) wide face; (b) narrow face

    圖  13  新晶器內鑄坯角部溫度與冷卻速度演變

    Figure  13.  Evolutions of temperature and cooling rate of slab corner in the new mold

    圖  14  薄板坯窄面足輥強冷新工藝下鑄坯二冷溫度場(a)及冷速(b)演變

    Figure  14.  Evolutions of temperature (a) and cooling rate (b) of slab corner during secondary cooling

    圖  15  新工藝下鑄坯寬面應力演變與鑄坯窄面形貌. (a) 應力演變; (b) 鑄坯形貌

    Figure  15.  Stress evolution of slab wide face under new casting conditions: (a) stress evolution; (b) slab morphology

    圖  16  不同工藝下QStE380TM鋼鑄坯角部不同位置處碳氮化物析出形貌. (a) 傳統工藝距鑄坯窄面5 mm; (b) 傳統工藝距鑄坯窄面10 mm; (c) 新工藝距鑄坯窄面5 mm; (d) 新工藝距鑄坯窄面10 mm

    Figure  16.  Distribution of precipitate in different positions of slab corner under different casting conditions of QStE380TM: (a) 5 mm away from the slab narrow face under conventional casting condition; (b) 10 mm away from the slab narrow face under conventional casting condition; (c) 5 mm away from the slab narrow face under new casting condition; (d) 10 mm away from the slab narrow face under new casting condition

    表  1  某鋼廠QStE380TM鋼薄板坯連鑄工藝參數

    Table  1.   Thin slab continuous casting process of QStE380TM steel in a plant

    Casting speed m/minSlab size/
    (mm×
    mm)
    Casting temper-
    ature /
    Mold wide
    face cool-
    ing water/
    (L·min?1
    Mold nar-
    row face cooling
    water/
    (L·min?1
    Temper-
    ature difference of mold/
    Liquidus
    temper-
    ature /
    4.01250×90155066773104.51525
    下載: 導出CSV

    表  2  4.0 m·min?1拉速連鑄QStE380TM鋼二冷區各區水量

    Table  2.   Secondary cooling water flow at the speed of 4.0 m·min?1 for casting QStE380TM thin slab

    SegmentCooling zoneWater flow/(L·min?1)
    Foot roller Segment1330.0
    Grid Segment21720.5
    Segment 13.01128.4
    3.1386.5
    3.2254.2
    Segment 24.0990.5
    4.1340.6
    4.2215.5
    Segment 35.0665.5
    5.1244.3
    5.2149.5
    Segment 46.0345.5
    6.1100.5
    6.2145.0
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mao X P, Gao J X, Chai Y Z. Development of thin slab casting and direct rolling process in China. Iron Steel, 2014, 49(7): 49

    毛新平, 高吉祥, 柴毅忠. 中國薄板坯連鑄連軋技術的發展. 鋼鐵, 2014, 49(7):49
    [2] Zhang J M, Zhou Q H, Yin Y B, et al. Research and application of three-dimensional dynamic secondary cooling and accurate soft reduction for continuous casting slab. Chin J Eng, 2021, 43(12): 1666

    張炯明, 周青海, 尹延斌, 等. 連鑄板坯三維二冷動態配水與精準壓下研究與應用. 工程科學學報, 2021, 43(12):1666
    [3] Yuan H, Yang S F, Wang T T, et al. Research progress of transverse corner crack on hypo-peritectic micro-alloyed steel slab. China Metall, 2020, 30(10): 1

    袁航, 楊樹峰, 王田田, 等. 亞包晶微合金鋼連鑄板坯角部橫裂紋研究進展. 中國冶金, 2020, 30(10):1
    [4] Cai W J, Yang J, Deng L Q, et al. Review on mechanism and control technology of transverse corner crack in continuous casting slab of peritectic steel. Steelmaking, 2021, 37(2): 37

    蔡文菁, 楊健, 鄧麗琴, 等. 包晶鋼連鑄坯角橫裂的產生機理與控制技術綜述. 煉鋼, 2021, 37(2):37
    [5] Toishi K, Miki Y, Kikuchi N. Simulation of crack initiation on the slab in continuous casting machine by FEM. ISIJ Int, 2019, 59(5): 865 doi: 10.2355/isijinternational.ISIJINT-2018-679
    [6] Ding Z Y, Feng C B, Chen J L. Reduction of transverse corner cracks in 2300 mm continuous cast slab of Zhanjiang Iron & Steel Co. ,Ltd. Baosteel Technol, 2018(1): 59 doi: 10.3969/j.issn.1008-0716.2018.01.012

    丁占元, 馮長寶, 陳建梁. 湛江鋼鐵2300 mm連鑄板坯角橫裂缺陷的改善. 寶鋼技術, 2018(1):59 doi: 10.3969/j.issn.1008-0716.2018.01.012
    [7] Hwang B, Lee H S, Kim Y G, et al. Analysis and prevention of side cracking phenomenon occurring during hot rolling of thick low-carbon steel plates. Mater Sci Eng A, 2005, 402(1-2): 177 doi: 10.1016/j.msea.2005.04.045
    [8] Mintz B. The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ Int, 1999, 39(9): 833 doi: 10.2355/isijinternational.39.833
    [9] Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int Mater Rev, 1991, 36(1): 187 doi: 10.1179/imr.1991.36.1.187
    [10] Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel. Metall Mater Trans A, 2009, 40(3): 560 doi: 10.1007/s11661-008-9758-0
    [11] Ma F J, Wen G H, Tang P, et al. Causes of transverse corner cracks in microalloyed steel in vertical bending continuous slab casters. Ironmak Steelmak, 2010, 37(1): 73 doi: 10.1179/030192309X12506804200465
    [12] Ma F J, Wen G H, Tang P, et al. Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B, 2011, 42(1): 81 doi: 10.1007/s11663-010-9454-5
    [13] Dippenaar R. Transverse surface cracks in continuously cast steel slabs, oscillation marks and austenite grain size. Mater Sci Forum, 2010, 638-642: 3603 doi: 10.4028/www.scientific.net/MSF.638-642.3603
    [14] Yan H C, Cheng X D, Gong Y K, et al. Analysis on formation of transverse corner cracks of slab of peritectic steel Q345D by slab quenching test and process improvement. Special Steel, 2019, 40(5): 64 doi: 10.3969/j.issn.1003-8620.2019.05.017

    顏慧成, 成旭東, 鞏彥坤, 等. 連鑄板坯快冷試驗分析Q345D包晶鋼板坯角部橫裂成因和工藝改進. 特殊鋼, 2019, 40(5):64 doi: 10.3969/j.issn.1003-8620.2019.05.017
    [15] Xu L J, Zhang S L, Qiu C G, et al. Surface microstructure control of microalloyed steel during slab casting. J Iron Steel Res Int, 2017, 24(8): 803 doi: 10.1016/S1006-706X(17)30120-6
    [16] Zong N F, Liu Y, Ma S D, et al. A review of chamfer technology in continuous casting process. Metall Res Technol, 2020, 117(2): 204 doi: 10.1051/metal/2020014
    [17] Lu D H, Wang Z P, Zhang H. Development of production technology of micro-alloyed steel continuous casting billet without corner defects. Continuous Cast, 2020, 45(5): 66

    路殿華, 王振鵬, 張慧. 微合金化鋼連鑄坯邊角部無缺陷生產技術開發. 連鑄, 2020, 45(5):66
    [18] Kato T, Ito Y, Kawamoto M, et al. Prevention of slab surface transverse cracking by microstructure control. ISIJ Int, 2003, 43(11): 1742 doi: 10.2355/isijinternational.43.1742
    [19] Baba N, Ohta K, Ito Y, et al. Prevention of slab surface transverse cracking at Kashima n° 2 caster with Surface Structure Control (SSC) cooling. Rev Met Paris, 2006, 103(4): 174 doi: 10.1051/metal:2006163
    [20] Niu Z Y, Cai Z Z, Zhu M Y. Dynamic distributions of mold flux and air gap in slab continuous casting mold. ISIJ Int, 2019, 59(2): 283 doi: 10.2355/isijinternational.ISIJINT-2018-609
    [21] Niu Z Y, Cai Z Z, Zhu M Y. Heat transfer behaviour of funnel mould copper plates during thin slab continuous casting and channel structure optimization. Ironmak Steelmak, 2020, 47(10): 1135 doi: 10.1080/03019233.2019.1674590
    [22] Cai Z Z, An J Z, Liu Z Y, et al. Research on development and application of micro-alloyed steel slab corner transversal crack control technology. J Iron Steel Res, 2019, 31(2): 117

    蔡兆鎮, 安家志, 劉志遠, 等. 微合金鋼連鑄坯角部裂紋控制技術研發及應用. 鋼鐵研究學報, 2019, 31(2):117
    [23] Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22

    劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22
  • 加載中
圖(16) / 表(2)
計量
  • 文章訪問數:  2425
  • HTML全文瀏覽量:  246
  • PDF下載量:  88
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-30
  • 網絡出版日期:  2022-02-15
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回